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Foreword

This is the manual of Cyan, a prototype-based statically-typed object-oriented language. The language
introduces several novelties that makes it easy to implement domain specific languages, reuse the code of
methods and nested prototypes (the equivalent of nested classes), blend dynamic and static code, reuse
exception treatment, and do several other common tasks. However, the reader should be aware that:

1. the design of Cyan has not finished. There are a lot of things to be designed, the metalevel being
one of them (although we cite metaobjects a lot in the text, the compile-time metaobject protocol
has not been defined). It is possible that the definition of some language features will be modified,
although it is improbable that they will be great changes;

2. many language features need a more detailed description. Probably there are ambiguities in the
description of some constructs. That will be corrected in due time;

3. Cyan is a big language. But this is fine since Cyan is an academic language. Its main goal is to
publish articles. However, there are many small details that were added thinking in the programmer,
such as nested if-else statements, while statement, literal objects, etc;

4. the compiler for a subset of the language is being built. It creates the AST (Abstract Syntax Tree)
generates code for a small subset of the language. Cyan code will be able to use Java classes. Since
the Cyan compiler produces Java code, this will not be difficult. Java code will be able to use Cyan
prototypes (which is a little bit tricker). However, nowhere in this text we talk about interrelations
between the two languages;

5. I have thought in how to implement some parts of the language in an efficient way (whenever
possible). There was no time to put the ideas in this report. We believe that many flexible
constructs, such as considering methods as objects, can be efficiently implemented (they would not
be considered objects unless necessary);

6. If you have any suggestions on anything, please email me.

The main novelties of Cyan are, in order of importance:

(a) grammar methods, Chapter 9;

(b) an object-oriented exception handling system, Chapter 12;

(c) context objects, Chapter 11;

(d) statically-typed anonymous functions, Chapter 10;

(e) many ways of mixing dynamic and static typing, Chapter 6;

(f) codegs, Section 5.4;
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(g) context functions, Section 10.11;

(h) literal objects delimited by user-defined symbols, Chapter 13. This feature is being defined;

(i) generic objects with variable number of parameters, Chapter 7.

(j) a restricted form of multi-methods (search for methods in the textually-declared order), Section 4.12;

(k) compilation considers previous version of the source code (source code in XML), Chapter 2;

The address of the Cyan home page is http://www.cyan-lang.org.
Other features will probably be added to Cyan and its libraries. They are:

(a) optional use of “;” at the end of a statement;

(b) metaobjects in the project program (a file that describes all source codes and libraries used in a
program). So a metaobject can be applied to all prototypes of a program or to all prototypes of a
package;

(c) enumerated constants;

(d) concurrent constructs;

(e) a library of patterns for parallel programming implemented as grammar methods

(f) a library of Domain Specific Languages for Graphical User Interface made using grammar methods
and based on Swing of Java (an initial version has been done already);

(g) a library for XML and HTML handling using DSL´s made using grammar methods;

(h) grammar methods with user-defined symbols. That would allow small parsers of arbitrary languages
to be implemented as grammar methods;

(i) a library of patterns implemented using codegs, regular metaobjects, and literal objects;

(j) doc metaobject to document objects, methods, variables, and so on;

(k) literal regular expressions (implemented as literal objects);

(l) generic prototypes defined as metaobjects. Then “P<T1, T2, ... Tn>” would be a call to a method
of metaobject P which would produce a real prototype that replaces “P<T1, T2, ... Tn>” in the
source code. Tuples will be implemented in this way by the Cyan compiler;

(m) generic methods.

5
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Chapter 1

An Overview of Cyan

Cyan is a statically-typed prototyped-based object-oriented language. As such, there is no class declara-
tion. Objects play the rôle of classes and the cloning and new operations are used to create new objects.
Although there is no class, objects do have types which are used to check the correctness of message
sending. Cyan supports single inheritance, mixin objects (similar to mixin classes with mixin inheri-
tance), interfaces, a completely object-oriented exception system, statically-typed anonymous functions,
optional dynamic typing, user-defined literal objects (an innovative way of creating objects), context
objects (which are a generalization of anonymous functions and one of the biggest innovation of the
language), and grammar methods and message sends (which makes it easy to define Domain Specific
Languages). The language will have a compile-time metaobject protocol in a not-so-near future.

Although the language is based in prototypes, it is closest in many aspects to class-based languages
like C++ [Str97] and Java than some prototype-based languages such as Self [US87] or Omega [Bla94].
For example, there is no workspace which survives program execution, objects have a new method that
creates a new object similar to another one (but without cloning it), and a Cyan program is given
textually. In Omega, for example, a method is added to a class through the IDE. Cyan is close to Java
and C++ in another undesirable way: its size is closer to these languages than to other prototype-based
languages (which are usually small). However, several concepts were unified in Cyan therefore reducing
the amount of constructs in relation to the amount of features. For example, methods are objects, the
exception system is completely object-oriented (it does not need many ad-hoc keywords found in other
languages), and anonymous functions are just a kind of context objects.

In this Chapter we give an overview of the language highlighting some of its features. An example
of a program in Cyan is shown in Figure 1.1. The corresponding Java program is shown in Figure 1.2.
It is assumed that there are classes In and Out in Java that do input and output (they are in package
inOut). The Cyan program declares objects Person and Program. Object Person declares a variable
name and methods getName and setName. Keywords var and fun are used before an instance variable
and a method declaration. var is optional. Method getName takes no argument and returns a String.
The return type appears before the method body (the “{” and after “->”. Inside a method, self refers to
the object that received the message that caused the execution of the method (same as self of Smalltalk
and this of Java). A package is a collection of objects and interfaces — it is the same concept of Java
packages and modules of other languages. All the public identifiers of a package become available after
a “import” declaration.

Object Program declares a run method. Assume that this will be the first method of the program to
be executed. The first statement of run is

var p = Person clone;

“Person clone” is the sending of message clone to object Person. “clone” is called the “selector” of
the message. All objects have a clone method. This statement declares a variable called p and assigns

6



package program

private object Person

private var String name = ""

public fun getName -> String {

^ self.name

}

public fun setName: String name {

self.name = name

}

end

public object Program

public fun run {

var p = Person clone;

var String name;

name = In readLine;

p setName: name;

Out println: (p getName);

}

end

Figure 1.1: A Cyan program

to it a copy of object Person. The code
var variableName = expr

declares a variable with the same compile-time type as expr and assigns the result of expr to the variable.
The type of expr should have been determined by the compiler using information of previous lines of
code. The compiler will issue a warning if expr is not a literal of a basic type, an one-dimensional array
of these literals, or a message send whose method is not attached to metaobject @typedClearly. The
next line,

var String name;

declares name as a variable of type String. This is also considered a statement. In
name = In readLine;

there is the sending of message readLine to object In, which is an object used for input. Statement
p setName: name;

is the sending of message “setName: name” to the object referenced to by p. The message selector is
“setName:” and “name” is the argument. Finally

Out println: (p getName);

is the sending of message “println: (p getName)” to object Out. The message selector is “println:”
and the argument is the object returned by “p getName”.

The parameters1 that follow a selector in a method declaration may be surrounded by ( and ). So
method setName: could have been declared as

public fun setName: (String name) { self.name = name }

This is allowed to increase the legibility of the code.

1In this manual, we will use parameter and argument as synonymous.
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package program;

import inOut;

private class Person {

private String name;

public String getName() {

return this.name;

}

public void setName( String name ) {

this.name = name;

}

}

public class Program {

public void run() {

Person p;

String name;

p = new Person();

name = In.readLine();

p.setName(name);

Out.println( p.getName() );

}

}

Figure 1.2: A Java program
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Definition and Declaration of Variables

Statement
var p = Person clone;

could have been defined as
var Person p;

p = Person clone;

Variable p is declared in the first line and its type is the object Person. When an object is used where
a type is expected, as in a variable or parameter declaration, it means “the type of the object”. By
the type rules of Cyan, explained latter, p can receive in assignments objects whose types are Person or
sub-objects of Person (objects that inherit from Store, a concept equivalent to inheritance of classes).

Inheritance

The type system of Cyan is close to that of Java although the first language does not support classes.
There are interfaces, single inheritance, and implementation of interfaces. The inheritance of an object
Person from Worker is made with the following syntax:

object Worker extends Person

private String company

// other instance variables and methods

end

If a method is redefined in a sub-object (be it public or protected), keyword “override” should appear
just after “public” or “protected”. Methods of the sub-object may call methods of the super-object
using keyword super as the message receiver:

super name: "anonymous"

Cyan has runtime objects, created with new and clone methods, and objects such as Person,
Program, and Worker, which are created before the program execution. To differentiate them, most of
the time the last objects will be called prototypes. However, when no confusion can arise, we may call
them objects too.

It is important to bear in mind the dual rôle of a prototype in Cyan: it is a regular object when it
appears in an expression and it is a type when it appears as the type of a variable, parameter, or return
value of methods.

Interfaces

Interfaces are similar to those of Java. One can write

interface Savable

fun save

end

object Person

public String name

public Int age

end

9



object Worker extends Person implements Savable

private String company

fun save {

// save to a file

}

... // elided

end

Here prototype Worker should implement method save. Otherwise the compiler would sign an error.
Unlike Java, interfaces in Cyan are objects too. They can be passed as parameters, assigned to objects,
and receive messages.

Values

The term “variable” in Cyan is used for local variable, instance variable (attribute of a prototype), and
parameter. A variable in Cyan is a reference to an object. The declaration of the variable does not
guarantee that an object was created. To initialize the variable one has to use a literal object such as 1,
3.1415, "Hello" or to created an object with clone or new.

Object String is a pre-defined object for storing sequences of characters. A literal string can be given
enclosed by " as usual: "Hi, this is a string", "um", "ended by newline\n".

Any

All prototypes in Cyan but Nil inherit from prototype Any which has some basic methods such as eq:

(reference comparison), == (is the content equal?), asString, and methods for computational reflection
(add methods, get object information, and so on). Method

fun eq: Any other -> Boolean

tests whether self and other reference the same object. Method == is equal to eq: by default but
it should be redefined by the user. Method eq: cannot be redefined in sub-prototypes. Method neq:

retorns the opposite truth value of eq:

Basic Types

Cyan has the following basic types: Byte, Short, Int, Long, Float, Double, Char, and Boolean (no
Void prototype). Since Cyan will be targetted to the Java Virtual Machine, the language has exactly
the same basic types as Java. Unlike Java, all basic types in Cyan inherit from prototype Any. Therefore
there are not two separate hierarchies for basic types, that obey value semantics,2 and all other types,
which obey reference semantics.

However, methods eq: and == of all basic types have the same semantics: they return true if the
contents of the objects are equal:

var Int I = 1;

var Int J = 1;

if I == J && (I eq: J) {

Out println: "This will be printed"

}

2The declaration of a variable allocates memory for the “object”. Variables really contains the object, it is stack allocated.
In reference semantics, variables are pointers. Objects are dynamically allocated.
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Since the basic prototypes cannot be inherited and methods eq: and == cannot be changed or intercepted,
not even by reflection, the compiler is free to implement basic types as if they obey value semantics. That
is, a basic type Int is translated to int of Java.3 There are cases in which this should not be done:

(a) when a basic type variable is passed as parameter to a method that accepts type Any:

object IntHashTable

fun key: String aKey value: Any aValue { ... }

...

end

...

IntHashTable key: "one" value: 1;

In this case the compiler will create a dynamic object of prototype Int for the 1 literal;

(b) when a basic type variable receives a message that correspond to a method of Any such as prototypeName:

// prints "Int"

Out println: (1 prototypeName);

But even in this case the compiler will be able to optimize the code since it knows which method
should be called;

In practice, the compiler will implement basic types as the basic types of Java almost all of the time.
The overhead should be minimal.

Nil and Union types

There is a special type in the language, the union type. The type Union<A, B> is considered, in assign-
ments and parameter passing, as a supertype of both A and B.

var Union<Int, String> x;

x = 0; // ok

x = "Cyan"; // ok

The compiler automatically casts objects of Int and String to x. To retrive the object stored in x it is
necessary to use method unionCase:do:

x

unionCase: Int do: {

Out println: ("twice is " + 2*x)

}

unionCase: String do: {

Out println: ("first char is" + x[0])

};

Inside the block passed as parameter to do: the variable has the type given as parameter to unionCase:.
Then we can multiple x by 2 in the first block and index the second x, which is of type String which
supports indexing.

3The compiler being built translates Cyan to Java.
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There is a special object called Nil which is not subtype or supertype of anything. It somehow plays
the rôle of nil of Smalltalk, NULL of C++, and null of Java. As in Smalltalk, Nil knows how to answer
some messages — it is an object. However, Nil can only be assigned to a variable of type Nil.

Nil cannot be assigned to a variable whose type is a prototype (that is, a prototype that is not Nil

itself).

var String s;

var Person p;

s = Nil; // compile-time error

p = Nil; // compile-time error

Variables that can hold a regular object and Nil should be declared using unions:

var String s;

var Person p;

s = Nil; // compile-time error

p = Nil; // compile-time error

To allow Nil values in variables it is necessary to declare an union of Nil with a prototype.

var Nil|String s;

s = Nil; // ok

s = In readLine;

s

unionCase: Nil do: {

// in case s is Nil

}

unionCase: String do: {

// s is a String here

};

Then the runtime error “message send to Nil” does not happens in Cyan. That is, it can only happen
in message sends to Dyn, the dynamic type.

A method that does not return anything can be declared as returning Nil. It is equivalent to declare
Nil as the return value and do not declare a return value.

Constructors and Inheritance

Constructors have the name init and may have any number of parameters. The return value should be
Nil or none. For each method named init the compiler (in fact, a metaobject) adds to the prototype
a method named new with the same parameter types. Each new method creates an object and calls the
corresponding init method. If the prototype does not define any init or new methods, the compiler
supplies an empty init method that does not take parameters. Consequently, a new method is created
too. A sub-prototype should call one of the init methods of the super-prototype (if one was defined by
the user) using keyword super:

object Person

fun init: String name { self.name = name }

private String name

...

end
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object Worker extends Person

fun init: String name, String job {

// this line is demanded

super init: name;

self.job = job;

}

private String job

...

end

All new methods return an object of the prototype. Therefore, Person has a method
Person new: String name

and
Worker has a method

Worker new: String name, String job

To make it easy to create objects, there is an alternative way of calling methods new and new:.
P(p1, p2, ..., pn) is a short form for
(P new: p1, p2, ..., pn)

Therefore we can write either
var prof = Worker("John", "Professor")

or
var prof = Worker new: "John", "Professor"

Of course, if a prototype P has a new method that does not take parameters we can write just “P()” to
create an object.

Public and Protected Instance Variables

An instance variable can be declared private, protected, or public. In the last two cases, the compiler
will create public or protected get and set methods for a hidden variable that can only be accessed, in
the source code, by these methods. For a user-declared public instance variable instVar of type T, the
compiler creates two methods and one hidden instance variable. For example, suppose University is
declared as

object University

public String name = ""

end

Then the compiler considers that this prototype were declared as

object University

public fun name -> String { return _name }

public fun name: (: _newName String ) { _name = _newName }

private var String _name

end

The source code is not modified. The compiler only changes the abstract syntax tree used internally.
Note that methods name and name: are considered different. The hidden instance variable _name

cannot be directly accessed in the source file. However, it can be accessed through the reflection library
(yet to be made). It is as if the compiler replaced the declaration

public String name
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by the above code. The same applies to protected variables. The instance variable should be used through
methods:

University name: "UFSCar";

Out println: (University name);

// compilation error in the lines below

University.name = "Universidade Federal de S~ao Carlos";

Out println: University.name;

Future versions of Cyan may allow the use of dot to access public and protected instance variables.
It is only necessary a syntax for grouping the get and set methods associated to a public or protected
variable. As it is, this syntax in unnecessary. To replace a public instance variable by methods it is only
necessary to delete the variable declaration and replace it by methods.

As an example of that, consider a prototype Point:

object Point

public Float dist

public Float angle

end

...

aPoint = Point new;

aPoint dist: 100;

aPoint angle: 30;

r = aPoint dist;

angle = aPoint angle;

...

Later we may be like to use cartesian coordinates. No problem:

object Point

public fun dist -> Float { return Math sqrt: (x*x + y*y) }

public fun dist: Float newDist {

// calculate x and y with this new distance

...

}

public fun angle -> Float { ... }

public fun angle: Float newAngle { ... }

private Float x

private Float y

end

...

// no changes here

aPoint = Point new;

aPoint dist: 100;

aPoint angle: 30;

r = aPoint dist;

angle = aPoint angle;
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...

Keyword Messages and Methods

Since Cyan is a descendent of Smalltalk, it supports keywords messages, a message with multiple selectors
(or keywords) as in

var p = Point dist: 100.0 angle: 20.0;

Method calls become documented without further effort. Prototype Point should have been declared
as

object Point

fun dist: (Float newDist) angle: (Float newAngle) -> Point {

var p = self clone;

p dist: newDist;

p angle: newAngle;

return p

}

public Float dist

public Float angle

end

Unlike Smalltalk, after a single keyword there may be multiple parameters:

object Quadrilateral

fun p1: (Int x1, Int y1)

p2: (Int x2, Int y2)

p3: Int x3, Int y3

p4: Int x4, Int y4 {

self.x = x1;

...

self.y4 = y4

}

...

private Int x1, y1, x2, y2, x3, y3, x4, y4

end

...

var r = Quadrilateral p1: 0, 0 p2: 100, 10

p3: 20, 50 p4: 120, 70;

This example declares the parameters after the selectors in all possible ways.

Abstract Prototypes

An abstract prototype should be declared with keyword abstract and it may have zero or more public
abstract methods:

public abstract object Shape

public abstract fun draw

end
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An abstract prototype does not have any new methods even if it declares init methods. Abstract methods
can only be declared in abstract objects. A sub-prototype of an abstract object may be declared abstract
or not. However, if it does not define the inherited abstract methods, it must be declared as abstract too.

To call an object “abstract” seem to be a contradiction in terms since “objects” in prototype-based
languages are concrete entities. However, this is no more strange than to have “abstract” classes in class-
based languages: classes are already an abstraction. To say “abstract class” is to refer to an abstraction
of an abstraction.

Final Prototypes and Methods

A prototype declared as final meaning that it cannot be inherited.

public final object Int

...

end

...

public object MyInt extends Int

...

end

There would be a compile-time error in the inheritance of the final prototype Int by MyInt.
A final method cannot be redefined. This allows the compiler to optimize code generation for these

methods.

public object Person

public final fun name -> String { ^ _name }

public final fun name: String newName { _name = newName }

...

end

...

var Person p;

...

p name: "Peter"; // static call

Public instance variables may be declared final. That means the get and set methods of the variable
are final.

Decision and Loop Methods and Statements

Since Cyan is a descendent of Smalltalk, statements if and while are not necessary. They can be
implemented as message sends:

( n%2 == 0 ) ifTrue: { s = "even" } ifFalse: { s = "odd" };

var i = 0;

{^ i < 5 } whileTrue: {

Out println: i;

++i

}

However, if and while statements were added to the language to make programming easier and cascaded
if´s efficient. The code above can be written as
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if n%2 == 0 {

s = "even"

}

else { // the else part is optional

s = "odd"

};

var i = 0;

while i < 5 {

Out println: i;

++i

}

cascaded if´s are possible:

if age < 3 {

s = "baby"

}

else if age <= 12 {

s = "child"

}

else if age <= 19 {

s = "teenager"

}

else {

s = "adult"

};

Without the if statement, the above code would be much greater and would demand a lot of message
sends and parameter passing which would require a lot of optimizations from the compiler.

There is also a short form of if that returns an expression:

oddOrEven = (n%2 == 0) t: "even" f: "odd" ;

// or

oddOrEven = (n%2 != 0) f: "even" t: "odd";

Unnecessary to say that this is a message send and that the arguments of both selectors should be of the
same type.

Every prototype inherits a grammar method from Any that implements the switch “statement”. There
is a metaobject attached to this method that checks whether the expressions after case: have the same
type as the receiver. The statements after do: between { and } are objects of type Function<Nil>.

var n = In readInt;

if n >= 0 && n <= 6 {

n

case: 0 do: {

Out println: "zero"

}

case: 1 do: {

Out println: "one"

}

case: 2, 3, 5 do: {

Out println: "prime"
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}

else: {

Out println: "four or six"

}

};

Cyan Symbols

There is a sub-prototype of String called CySymbol (for Cyan Symbol) which represents strings with
an special eq: operator: it returns true if the argument and self have the same contents. This is the
same concept as Symbols of Smalltalk. There are two types of literal symbols. The first one starts by a
# followed, without spaces, by letters, digits, underscores, and “:”, starting with a letter or digit. The
second type is a string preceded by a #, as #"a symbol". These are valid symbols in Cyan:

#name #name:

#"this is a valid symbol; ok? ! &)"

#at:put: #1 #711

#"1 + 2" #"Hello world"

A symbol can be assigned to a string variable since CySymbol inherits from String.

var String s;

s = #at:put:;

// prints at:put:

Out println: s;

s = #"Hello world"

// prints Hello world

Out println: s;

We call the “name of a method” the concatenation of all of its selectors. For example, methods
fun key: (String aKey) value: (Int aValue) -> String

fun name: (String aName) age: (Int aAge) salary: (aSalary Float) -> Worker

have names key:value: and name:age:salary:.

Overloading

There may be methods with the same name but with different number of parameters and parameter
types (method overloading). For example, one can declare

object MyBlackBoard

fun draw: Square f { ... }

fun draw: Triangle f { ... }

fun draw: Circle f { ... }

fun draw: Shape f { ... }

private String name

end

There are four draw methods that are considered different by the compiler. In a message send
MyBlackBoard draw: fig

the runtime system searchs for a draw method in prototype MyBlackBoard in the textual order in which
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the methods were declared. It first checks whether fig references a prototype which is a sub-prototype
from Square (that is, whether the prototype extends Square, assuming Square is a prototype and not
an interface). If it is not, the searches continues in the second method,

draw: Triangle f

and so on. If an adequate method were not found in this prototype, the search would continue in the
super-prototype.

Subtyping and Method Search

The definition of subtyping in Cyan considers that prototype S is a subtype of T if S inherits from T (in
this case T is a prototype) or if S implements interface T. An interface S is a subtype of interface T if S
extends T. This is a pretty usual definition of subtyping.

In the general case, in a message send
p draw: fig

the algorithm searches for an adequate method in the object the variable p refer to and then, if this
search fails, proceeds up in the inheritance hierarchy. Suppose C inherits from B that inherits from A.
Variable x is declared with type B and refers to a C object at runtime. Consider the message send

x first: expr1 second: expr2

At runtime a search is made for a method of object C such that:

(a) the method has selectors first: and second: and;

(b) selector first: of the method takes a single parameter of type T and the runtime type of expr1 is
subtype of T. The same applies to selector second: and expr2;

The methods are searched for in object C in the textually declared order. The return value type is not
considered in this search. If no adequate method is found in object C, the search continues at object B.
If again no method is found, the search continues at object A.

The compiler makes almost exactly this search with just one difference: the search for the method
starts at the declared type of x, B.

This unusual runtime search for a method is used for two reasons:

(a) it can be employed in dynamically-typed languages. Cyan was designed to allow a smooth transition
between dynamic and static typing. Cyan will not demand the declaration of types for variables
(including parameters and instance variables). After the program is working, types can be added.
The algorithm that searches for a method described above can be used in dynamically and statically-
typed languages;

(b) it is used in the Cyan exception system. When looking for an exception treatment, the textual order
is the correct order to follow. Just like in Java/C++/etc in which the catch clauses after a try block
are checked in the order in which they were declared after an exception is thrown in the try block.

The programmer should be aware that to declare two methods such that:

(a) they have the same selectors and;

(b) for each selector, the number of parameters is the same.

will make message send much slower than the normal.
Methods that differ only in the return value type cannot belong to the same prototype. Then it is

illegal to declare methods Int id and String id in the same prototype (even if one of them is inherited).
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The search for a method in Cyan makes the language supports a kind of multi-methods. The linking
“message”-“method” considers not only the message receiver but also other parameters of the message
(if they exist). Unlike other object-oriented languages, the parameter types are inspected at runtime in
order to discover which method should be called.

Arrays

Array prototypes are declared using the syntax: Array<A> in which A is the array element type. Only
one-dimensional arrays are supported. A literal array object is created using {# element list #}, as
in the example:

var n = 5;

var anIntArray = {# 1, 2, (Math sqr: n) #};

var Array<String> aStringArray;

aStringArray = {# "one", "t" + "wo" #};

This code creates two literal arrays. anIntArray will have elements 1, 2, and 25, assuming the existence
of a Math prototype with a sqr method (square the argument). And aStringArray will have elements
"one" and "two". The array objects are always created at runtime. So a loop

1..10 foreach: { (: Int i :)

Out println: {# i-1, i, i + 1 #}

}

Creates ten different literal arrays at runtime. The type of a literal array is Array<A> in which A is the
type of the first element of the literal array. Therefore

var fa = {# 1.0, 2, 3 #};

declares fa as a Array<Float>.

Mixin Objects

A prototype can inherit from any number of mixin prototypes. A mixin prototype is declared as in the
example

mixin(Window) object Border

public Int borderColor;

...

public override fun draw {

drawBorder;

super draw;

}

fun drawBorder { ... }

end

Here Border is a mixin prototype that may be inherited by prototype Window or its sub-prototypes
(Window could be an interface too). Inside this mixin prototype, methods of Border may send messages to
super or self as if Border inherited from Window (or as if Border inherited from some class implementing
interface Window). Code

object Window mixin Border

fun draw { ... }
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Any

Window’

Window

body of original
prototype

body of Border

Window

Figure 1.3: The resulting Window prototype after the mixin inheritance is applied

...

end

makes Window inherit from Border. The word “inherits” here is misleading. In fact, the compiler creates a
prototype Window’ with the contents of Window, creates a prototype Window with the contents of Border,
and makes Window inherit from Window’.4 What the compiler does is a textual copy of the text of Window
to a new text create for Window’. Then it deletes the text of Window putting in its place the text of
Border. Figure 1.3 illustrates the resulting Window prototype.

A mixin declared as

mixin(A) object B

...

end

should obey the same restrictions as a prototype that inherits from A. In particular, if B declares a method
public override fun get -> T

that is already defined in A, it should be declared with the keyword override and its return value type
should be equal to the return value type of method get of A or it should be a subtype of it:

object A

fun get -> Person { ... }

end

mixin(A) object B

public override fun get -> Worker { ... }

end

Prototype Border may add behavior to object Window. For example, it defines a draw method that
draws a border and calls draw of Window using super — see the example. Then,

Window draw

first calls draw of Border. This method calls method drawBorder of Border and then draw of Window
using super.

Mixin prototypes can also be dynamically attached to objects. Suppose mixin Border is not inherited
from prototype Window. A mixin object of Border may be dynamically attached to a Window object using
the attachMixin: method inherited from Any:

var w = Window new;

// other initializations of w

4Window’ is just a new name.
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...

// calls draw of Window: no border

w draw;

w attachMixin: Border;

// calls draw of Border

w draw;

Border works like a runtime metaobject with almost the same semantics as shells of the Green
language [dOGab]. Any messages sent to Window will now be searched first in Border and then in
Window. When Window is cloned or a new object is created from it using new, a new Border object is
created too.

Dynamic Typing

Although Cyan is statically-typed, it supports some features of dynamically-typed languages. A message
send whose selectors are preceded by ? is not checked at compile-time. That is, the compiler does not
check whether the static type of the expression receiving that message declares a method with those
selectors. For example, in the code below, the compiler does not check whether prototype Person defines
a method with selectors name: and age: that accepts as parameters a String and an Int.

var p Person;

...

p ?name: "Peter" ?age: 31;

This non-checked message send is useful when the exact type of the receiver is not known:

fun printArray: Array<Any> anArray {

anArray foreach: { (: elem Any :)

elem ?printObj

}

}

The array could have objects of any type. At runtime, a message printObj is sent to all of them. If all
objects of the array implemented a Printable interface, then we could declare parameter anArray with
type Array<Printable>. However, this may not be the case and the above code would be the only way
of sending message printObj to all array objects.

The compiler does not do any type checking using the returned value of a dynamic method. That is,
the compiler considers that

if obj ?get { ... }

is type correct, even though it does not know at compile-time if obj ?get returns a boolean value.
Dynamic checking with ? plus the reflective facilities of Cyan can be used to create objects with

dynamic fields. Object DTuple of the language library allows one to add fields dynamically:

var t = DTuple new;

// add field "name" to t

t ?name: "Carolina";

// prints "Carolina"

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t ?age: 1;
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// prints 1

Out println: (t ?age);

// if uncommented the line below would produce a

// **compile-time** error because DTuple does not

// have an "age" method

Out println: (t age);

Here fields name and age were dynamically added to object t.
Metaobject @dynOnce used before a prototype makes types optional in the declaration of variables

and return value types.

@dynOnce object Person

public name

public age

fun addAge: n {

// unnecessary and didactic code

var sum;

sum = age + n;

age = sum

}

fun print {

Out println: name + " (#{age} years old)"

}

end

With @dynOnce, types become optional in Person. Suppose that in the first run of the program, the
following code is executed.

var p Person;

p name: "Turing";

p age: 100;

p print;

Then at the end of program execution, the compiler adds some of the missing types in the declaration of
Person:

@dynOnce object Person

public String name

public Int age

fun addAge: n {

// unnecessary and didactic code

var sum;

sum = age + n;

age = sum

}

fun print {

Out println: name + " (#{age} years old)"

}

end

However, addAge: was not used in this run of the program and its parameter n does not have a type
yet. In the next run, suppose statement
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Person addAge: 1

is executed. Then all the missing types of Person have been established. Again the compiler changes the
source code of Person to

object Person

public String name

public Int age

fun addAge: Int n {

// unnecessary and didactic code

var Int sum;

sum = age + n;

age = sum

}

fun print {

Out println: name + " (#{age} years old)"

}

end

Since all variables and return value types are known, the call to metaobject @dynOnce is removed from
the source code.

There is also a metaobject @dynAlways whose call should precede a prototype declaration. This
prototype should not declare any types for variables or return value methods. The compiler will not issue
an error because of the missing types. This prototype becomes a dynamically-typed piece of code. The
source code is not changed afterwards by the compiler.

Type Dyn is a virtual type used for dynamic typing. A variable of type Dyn can receive in assignments
an expression of any type. And an expression of type Dyn can be assigned to a variable of any type. All
message sends to an expression of type Dyn is considered correct by the compiler.

Expressions in Strings

In a string, a # not preceded by a \ should be followed either by a valid identifier or an expression between
{ and }. The identifier should be a parameter, local variable, or unary method of the current object.
The result is that the identifier or the expression between { and } is converted at runtime to a string
(through the asString method) and concatenated to the string. Let us see an example:

var name = "Johnson";

var n = 3;

var johnsonSalary Float = 7000.0;

Out println: "Person name = #name, id = #{n*n+1}, salary = #johnsonSalary";

This code prints
Person name = Johnson, id = 10, salary = 7000.0

The last line is completely equivalent to

Out println: "Person name = " + name + ", id = " + (n*n+1) + ",

salary = " + johnsonSalary;

Generic Prototypes

Cyan also supports generic prototypes in a form similar to other languages but with some important
differences. First, a family of generic prototypes may share a single name but different parameters. For
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example, there is a single name Tuple that is used for tuples of any number of parameters (as many as
there are in the library):

var Tuple<String> aName;

var Tuple<String, Int> p;

aName f1: "Lı́via"

// prints Lı́via

Out println: (aName f1);

p f1: "Carol"

p f2: 1

// prints "name: Carol age: 1". Here + concatenates strings

Out println: "name: " + (p f1) + " age: " + (p f2);

Second, it is possible to used field names as parameters:

var NTuple<name, String> aName;

var NTuple<name, String, age, Int> p;

aName name: "Lı́via"

// prints Lı́via

Out println: (aName name);

p name: "Carol"

p age: 1

// prints "name: Carol age: 1"

Out println: "name: " + (p name) + " age: " + (p age);

A generic prototype is considered different from the prototype without parameters too:

object Box

public Any value

end

object Box<T>

public T value

end

...

var giftBox = Box new;

var intBox = Box<Int> new;

A unnamed literal tuple is defined between [. and .] as in

var p = [. "Lı́via", 4 .];

Out println: (p f1), " age ", (p f2);

// or

var Tuple<String, Int> q;

q = [. "Lı́via", 4 .];

A named literal tuple demands the name of the fields:

var p = [. name:"Lı́via", age:4 .];

Out println: ((p name) + " age " + (p age));

// or

var NTuple<name, String, age, Int> q;

q = [. name:"Lı́via", age:4 .];
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Multiple Assignments

Multiple assignments can be used to extract the values of literal tuples:

var Livia = [. "Lı́via", 4 .];

var Carol = [. name:"Carolina", age:1 .];

var String name;

var Int age;

// multiple assignment

name, age = Livia;

name, age = Carol;

The same applies to return value of methods:

object Person

...

fun getInfo -> Tuple<String, Int> {

return [. name, age .]

}

private String name

private Int age

end

...

var Myself = Person new;

name, age = Myself getInfo;

Both unnamed and named tuples can be used in multiple assignments. If there are less tuple fields than
the number of variables of the left of symbol “=”, then the compiler issues an error. If there are more
fields than the number of variables, the extra fields are ignored.

Anonymous Functions

Cyan supports statically-typed anonymous functions, which are called blocks in Smalltalk. An anonymous
function is a literal object that can access local variables and instance variables. It is delimited by { and
} and can have parameters which should be put between (: and :) as in:

var b = { (: Int x :) ^x*x };

// prints 25

Out println: (b eval: 5);

Here { (: Int x:) ^x*x } is a function with one Int parameter, x. The return value of the function
is the expression following the symbol “^”. The return value type may be omitted in the declaration
— it will be deduced by the compiler. This function takes a parameter and returns the square of it. A
function is an literal object with a method eval or eval: (if it has parameters as the one above). The
statements given in the function can be called by sending message eval or eval: to it, as in “b eval:

5”.
A function can also access a local variable:

var y = 2;
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var b = { (: Int x :) ^ x + y };

// prints 7

Out println: (b eval: 5);

As full objects, functions can be passed as parameters:

object Loop

fun until: (Function<Boolean> test) do: (Function<Nil> b) {

b eval;

(test eval) ifTrue: { until: test do: b }

}

end

...

// prints "i = 0", "i = 1", ... without the "s

var i = 0;

Loop until: { ^ i < 10 } do: {

Out println: "i = #i";

++i

}

Here prototype Loop defines a method until:do: which takes as parameters a function that returns a
Boolean value (Function<Boolean>) and a function that returns nothing (Function<Nil>). The sec-
ond function is evaluated until the first function evaluated to false (and at least one time). Notation
"i = #i" is equivalent to ("i = " + i). If an expression should come after #, then we should do
"i = #{i + 1}", which is the same as ("i = " + (i+1)). Note that both functions passed as parame-
ters to method until:do: use the local variable i, which is a local variable.

Functions are useful to iterate over collections. For example,

var v = {# 1, 2, 3, 4, 5, 6 #};

// sum all elements of vector v

var sum = 0;

v foreach: { (: Int x :) sum = sum + x

};

Method foreach: of the array v calls the function (as in “b eval: 5”) for each of the array elements.
The sum of all elements is then put in variable sum.

Sometimes we do not want to change the value of a local variable in a function. In these cases, we
should precede the variable by %:

var y = 2;

var b = { (: Int x :) y = y + 1; ^ x + y };

// prints 8

Out println: (b eval: 5);

// prints 3

Out println: y;

y = 4;

// prints 10

Out println: (b eval: 5);

// prints 5

Out println: y;
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var y = 2;

var c = { (: Int x :) %y = %y + 1; ^ x + %y };

// prints 8

Out println: (c eval: 5);

// prints 2

Out println: y;

y = 4;

// prints 8

Out println: (c eval: 5);

// prints 4

Out println: y;

The value of local variable y is copied to a variable called y that is local to the function. This copy
is made at the creation of the function, when the value of y is assigned to an instance variable of the
function object. Changes to this variable are not reflected into the original local variable.

However, both the original variable and the %-variable refer to the same object. Message sends to
this object using the %-variable or the original variable will produce the same result. The variables are
different but they refer to the same object.

var p = Person name: "Newton" age: 370;

{ // here %p and p DO refer to the same object

%p = Person new;

// here %p and p do NOT refer to the same object

%p name: "Gauss" age: 235

} eval;

// prints "Newton"

Out println: (p name);

{ // here %p and p DO refer to the same object

%p name: "Gauss";

// the name of the object Person was

// changed to "Gauss"

} eval;

// prints "Gauss"

Out println: (p name);

There are two kinds of functions: those that accesses local variables (without the % qualifier) or
have a return statement and those that do not have any of these things. They are called restricted
and unrestricted functions, respectively (for short, r-functions and u-functions). r-functions cannot be
stored in instance variables. If this were allowed, the function could be used after the local variables it
uses ceased to exist. There are special rules for type checking of r-functions. The rules make sure an
r-function will not outlive the local variables it uses in its body. An u-function can be assigned to a
variable whose type is an r-function. Since parameter passing is a kind of assignment, r-functions can be
passed as parameters — it is only necessary that the formal parameters have r-functions as types. In this
way, anonymous functions (functions) in Cyan are statically-typed and retain almost all functionalities
of anonymous functions of dynamic languages such as Smalltalk.

Context Objects

Context objects are a generalization of functions and internal (or inner) classes. Besides that, they allow
a form of language-C-like safe pointers. The variables external to the function are made explicit in a
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context object, freeing it from the context in which it is used. For example, consider the function
{ (: Int x :) sum = sum + x }

It cannot be reused because it uses external (to the function) variable sum and because it is a literal
object. Using context objects, the dependence of the function to this variable is made explicit:

// UFunction<Int, Nil> is a function that takes an Int

// as parameter and does not return anything

object Sum(Int &sum) extends UFunction<Int, Nil>

fun eval: Int x {

sum = sum + x

}

end

...

// sum the elements of array v

var s = 0;

v foreach: Sum(s)

Context objects may have one or more parameters given between ( and ) after the object name. These
correspond to the variables that are external to the function (sum in this case). This context object
implements interface Function<Int, Nil> which represents functions that take an Int as a parameter
and returns nothing. Method eval: contains the same code as the original function. In line

v foreach: Sum(s)

expression “Sum(s)” creates at runtime an object of Sum in which sum represents the same variable as s.
When another object is assigned to sum in the context object, this same object is assigned to s. It is as
if sum and s were exactly the same variable.

Prototype Sum can be used in other methods making the code of eval: reusable. Reuse is not possible
with functions because they are literals. Context objects can be generic, making them even more useful:

object Sum<T>(T &sum) extends UFunction<T, Nil>

fun eval: T x {

sum = sum + x

}

end

...

// concatenate the elements of array v

var v = {# "but", "ter", "fly" #};

var String s;

v foreach: Sum<String>(s)

Now context object Sum is used to concatenate the elements of vector v (which is a string array).
A context-object parameter may be preceded by % to mean that it is a copy parameter. That means

changes in the context-object parameter are not propagated to the real argument:

object Sum(Int %sum) extends UFunction<Int, Nil>

fun eval: Int x {

sum = sum + x

}

end
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...

// do not sum the elements of array v

var s = 0;

v foreach: Sum(s);

assert: (s == 0);

Method assert: of Any checks whether its argument returns true. It ends the program otherwise. In
this example, the final value of s will be 0.

A context-object parameter may be preceded by * to indicate that the real argument to the context
object should be an instance variable. This kind of parameter is called instance variable parameter.
Parameters whose types are preceded by & are called reference parameters (see first example). Context
objects that have at least one reference parameter are called restricted context objects and have the same
restrictions as r-functions. All the other are unrestricted context objects and there is no restriction on
their use.

Context objects are a generalization of both functions and nested objects, a concept similar to nested
or inner classes. That is, a class declared inside other class that can access the instance variables and
method of it. However, class B declared inside class A is not reusable with other classes. Class B will
always be attached to A. In Cyan, B may be implemented as a context object that may be attached to
an object A (that play the rôle of class A) or to any other prototype that has instance variables of the
types of the parameters of B. Besides that, both referenced parameters and instance variable parameters
implement a kind of language-C like pointers. In fact, it is as if the context-object parameter were a
pointer to the real argument:

// C

int *sum;

int s = 0;

sum = &s;

*sum = *sum + 1;

// value of s was changed

printf("%d\n", s);

Context Functions

A context function is a kind of method that can be plugged to more than one prototype. It is also a kind
of literal context object with a single eval or eval: method. A context function was created to allow
a method to be attached to all objects of a prototype. This concept is very similar to an object that
represent a “class method” in class-based object-oriented languages.

A context function that returns the name of a color is declared as

var colorNameCB = { (: IColor self -> String :)

// colorTable takes an integer and returns

// a string with the name of the color of

// that integer

return %colorTable[ self color ]

};

self appears in the first parameter declaration. Its type is IColor:

interface IColor

fun color -> Int
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fun color: Int

end

Inside the function, self has type IColor. Message sends to self should match methods declared in the
IColor interface. The only message send in this example is “self color”, which calls method color of
self.

The context function referenced by colorNameCB may be added to any object that implements inter-
face IColor using method addMethod: of Any.

private object Shape implements IColor

fun color -> Int { ^_color }

fun color: Int newColor { _color = newColor }

...

end

...

var colorNameCB = {

(: IColor self :)

return colorTable[ self color ]

};

Shape addMethod:

selector: #colorName

returnType: String

body: colorNameCB;

Out println: (Shape ?colorName);

Of course, the method added to Shape,
String colorName

should be called using ? because it is not in the Shape signature. We could also have written

private object Button implements IColor

...

end

...

Button addMethod:

selector: #colorName

returnType: String

body: {

(: IColor self :)

return colorTable[ self color ]

};

var b = Button();

Out println: (b ?colorName);

Since a context function has a self parameter, it cannot be called as a regular function:
var s = colorNameCB eval;

That will result in a compile error because the context function does not have an eval method. Instead,
it has a bindToFunction: method to set the function self:

var b = colorNameCB bindToFunction: Shape;
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( b eval ) println;

Grammar Methods

A method declared with selectors s1:s2 can only be called through a message send s1: e1 s2: e2 in
which e1 and e2 are expressions. Grammar methods do not fix the selectors of the message send. Using
operators of regular expressions a grammar method may specify that some selectors can be repeated,
some are optional, there can be one or more parameters to a given selector, there are alternative selectors
and just one of them can be used.

A method that takes a variable number of Int arguments is declared as shown below.

// a set of integers

object IntSet

fun (add: (Int)+) t { ... }

...

end

The + after (Int) indicates that after add: there may be one or more integer arguments:

IntSet add: 0, 2, 4;

var odd = IntSet new;

odd add: 1, 3;

Maybe we would like to repeat the selector for each argument. That can be made:

// a set of integers

object IntSet

fun (add: Int)+ t { ... }

...

end

...

IntSet add: 0 add: 2 add: 4;

var odd = IntSet new;

odd add: 1 add: 3;

The t that appears after + is the method parameter. Every grammar method is declared using ( and )

and, after the signature there should appear exactly one parameter. Its type may be omitted. In this
case the compiler will assign a type to it — this same type can be given by the programmar. There are
rules for calculating the type of the single parameter of a grammar method (See Chapter 9). This type
dependes on the regular expression used to define the method. In both of the above examples, the type
of t is

Array<Int>

So the method could have been declared as

// a set of integers

object IntSet

fun (add: Int)+ Array<Int> t {

// the simplest and inefficient way of

// inserting elements into intArray

t foreach: { (: Int elem :)
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// inserts elem in intArray

// create a new array if there is not

// space in this one

...

}

}

...

private Array<Int> intArray

end

A grammar method may use all of the regular expression operators: A+ matches one or more A´s, A*
matches zero or more A´s, A? matches A or nothing (A is optional), A | B matches A or B (but not both),
and A B matches A followed by B. The | operator may be used with types:

fun (add: Int | String) Union<Int, String> t { ... }

Method add: may receive as parameters an Int or a String.
Grammar methods are useful for implementing Domain Specific Languages (DSL). In fact, every

grammar method can be considered as implementing a DSL. The advantages of using grammar methods
for DSL are that the lexical and syntactical analysis and the building of the Abstract Syntax Tree are
automatically made by the compiler. The parsing is based on the grammar method. The AST of the
grammar message is referenced by the single parameter of the grammar method. Besides that, it is
possible to replace the ugly type of the single parameter of the grammar method by a more meaningful
prototype. Using annotations (Section 5.1) one can annotate a prototype with information and put it as
the type of the grammar method parameter. The compiler will know how to use this prototype in order
to build the AST of a grammar message. See Section 9.7 for more details.

There is one problem left: grammar methods are defined using regular expression operators. Therefore
they cannot define context-free languages. This problem is easily solved by using parenthesis in the
message send and sometimes more than one grammar method. The details are given in Section 9.5.
However, we present one example that implements Lisp-like lists:

object GenList

fun (L: (List | Int)* ) Array<Union<List, Int>> t -> List {

// here parameter t is converted into a list object

...

}

end

The grammar defining a Lisp list is not a regular grammar — there is a recursion because a list can be
a list element: ( 1, (2, 3), 4)

This list can be built using parenthesis in a grammar message send

var b = GenList L: 1, (GenList L: 2, 3), 4;

Another example of domain specific language implemented using grammar method uses commands
given to a radio-controlled car (a toy). The car obeys commands related to movement such as to turn left
(a certain number of degrees) right, increase speed, decrease speed, move n centimeters, turn on, and off.
Assuming the existence of a prototype CarRC with an appropriate grammar method, one could write

CarRC on:

left: 30

move: 100

right: 20;
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CarRC move: 200

speedUp: 1

move: 50

speedDown: 1

off;

These two message would cause the call of the same grammar method, which is declared as

object CarRC

fun (on: | off: | move: Int | left: Int | right: Int | speedUp: Int | speedDown:

Int)+

Array<Union<Any, Any, Int, Int, Int, Int, Int>> t {

// here should come the implementation of the commands

}

// other methods

...

end

The grammar method could really send orders to a real car in the method body, after interpreting the t

parameter.
The uses of grammar methods are endless. They can define optional parameters, methods with

variable number of parameters, and mainly DSL´s. One could define methods for SQL, XML (at least
part of it!), parallel programming, graphical user interfaces, any small language. It takes minutes to
implement a small DSL, not hours.

Methods as Objects

Methods are objects too. Therefore it is possible to pass a method as parameter. As an example one can
use

P getMethod: "s1:T1 s2:T2, T3"

to reference the sole method of prototype P.

object P

fun s1: T1 p1

s2: (T2 p2, T3 p3) {

/* empty */

}

end

The ability of referring to a method is very useful in graphical user interfaces as the example below
shows.

object MenuItem

fun onMouseClick: UFunction<Nil> b {

...

}

end

object Help

fun show { ... }
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...

end

object FileMenu

fun open { ... }

end

var helpItem = MenuItem new;

helpItem onMouseClick: (Help getMethod: "show" );

var openItem = MenuItem new;

openItem onMouseClick: (FileMenu getMethod: "open");

...

We could also have passed u-functions to method onMouseClick:
openItem onMouseClick: { self.helpObject show }

There may even exist a table containing methods and functions:

var codeTable = Hashtable<String, UFunction<Int, Int>> new;

codeTable key: "square" value: (Math getMethod: "sqr");

codeTable key: "twice" value: { (: Int n :) ^n*n };

codeTable key: "succ" value: { (: Int n :) ^n+1 };

codeTable key: "pred" value: { (: Int n :) ^n-1 };

// 5 getMethod: "+ Int" is method "fun Int + (Int other)"

// of object 5

codeTable key: "add" value: (5 getMethod: "+ Int");

...

// read the function name from the keyboard

// and get the u-function of it

var b = codeTable key: (In readLine);

// call the command

Out println: (b eval: 2);

The Exception Handling System

The exception handling system of Cyan was based on that of Green. However, it has important im-
provements when compared with the EHS of this last language. Both are completely object-oriented,
contrary to all systems of languages we know of. An exception is thrown by sending message throw: to
self passing the exception object as parameter. This exception object is exactly the exception objects
of other languages. Method throw: is defined in the super-prototype of every one, Any.

The simplest way of catching an exception is to pass the exception treatment as parameters to catch:

selectors in a message send to a function.

var age Int;

{

age = In readInt;

if age < 0 {

throw: ExceptionNegAge(age)

}
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} catch: { (: ExceptionNegAge e :) Out println: "Age #{e age} is negative" };

Here exception ExceptionNegAge is thrown by message send
throw: ExceptionNegAge(age)

in which “ExceptionNegAge(age)” is a short form of “(ExceptionNegAge new: age)”.
When the exception is thrown the control is transferred to the function passed as parameter to

catch:. The error message is then printed. Object ExceptionNegAge should be a sub-prototype of
CyException.

object ExceptionNegAge extends CyException

// ’@init(age)’ creates a constructor with

// parameter age

@init(age)

public Int age

end

This example in Java would be

int age;

try {

age = In.readInt();

if ( age < 0 )

throw new ExceptionNegAge(age);

} catch ( ExceptionNegAge e ) {

System.out.println("Age " + e.getAge() + " is negative");

}

There may be as many catch: selectors as necessary, each one taking a single parameter.

var Int age;

{

age = In readInt;

if age < 0 {

throw: ExceptionNegAge(age);

}

else if age > 127 {

throw: ExceptionTooOldAge(age)

}

} catch: { (: ExceptionNegAge e :) Out println: "Age #{e age} is negative" }

catch: { (: ExceptionTooOldAge e :) Out println: "Age #{e age} is out of limits" };

The catch: parameter may be any object with one or more eval: methods, each of them accepting one
parameter whose type is sub-prototype of CyException. So we could write:

var Int age;

{

age = In readInt;

if age < 0 {

throw: ExceptionNegAge(age);

}

else if age > 127 {

throw: ExceptionTooOldAge(age)
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}

} catch: ExceptionCatchAge;

Consider that ExceptionCatchAge is

object ExceptionCatchAge

fun eval: ExceptionNegAge e {

Out println: "Age #{e age} is negative"

}

fun eval: ExceptionTooOldAge e {

Out println: "Age #{e age} is out of limits"

}

end

This new implementation produces the same results as the previous one. When an exception E is thrown
in the function that reads the age, the runtime system starts a search in the parameter to catch:, which
is ExceptionCatchAge. It searches for an eval: method that can accept E as parameter in the textual
order in which the methods are declared. This is exactly as the search made after a message send. The
result is exactly the same as the code with two functions passed as parameters to two catch selectors.

The exception handling system of Cyan has several advantages over the traditional approach: excep-
tion treatment can be reused, ExceptionCatchAge can be used in many places, exception treatment can
be organized in a hierarchy (ExceptionCatchAge can be inherited and some eval: methods can be over-
ridden. Other methods can be added.), the EHS is integrated in the language (it is also object-oriented),
one can use metaobjects with the EHS, and there can be libraries of treatment code. For short, all the
power of object-oriented programming is brought to exception handling and treatment. Since the Cyan
EHS has all of the advantages of the EHS of Green, the reader can know more about its features in an
article by José [dOGaa].

Metaobjects

Compile-time metaobjects are objects that can change the behavior of the program, add information to
it, or can inspect the source code. A compile-time metaobject is attached to a prototype using @ as in

@checkStyle object University

@log fun name -> String { return uName }

...

end

...

@singleton object Earth

...

end

object Help

...

end

...

var t = @text(<+ ... +>);

...
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Metaobject checkStyle is activated at compile-time in the first line of this example. It is attached
to specific points of the compiler controlling the compilation of prototype University. It could check
whether the prototype name, the method names, the instance variable names, and local variables follow
some conventions for identifiers (prototype in lower case except the first letter, method selectors, instance
variables, and local variables in lower case). The compiler calls methods of the metaobject at some points
of the compilation. It is as if the metaobject was added to the compiler. Which method is called at
which point is defined by the Meta-Object Protocol (MOP) which has not been defined yet. Initially
the Cyan metaobjects will be written in Java because the compiler is written in Java. Afterwards they
will be made in Cyan.

There is a call in the example to a metaobject text. After the name there may appear a sequence of
symbols. The argument to the metaobject call ends with a sequence that mirrors the start sequence. So
(<+ is ended by +>). Almost any sequence is valid and different metaobject calls may use the same sym-
bol sequence. The text in between is passed as argument to a call to a specific method of this metaobject
(say, parse) defined by the MOP. text is a pre-defined metaobject. A call to it is replaced by a literal
array of Char´s with all the characters between the delimiters. Note that to say “metaobject call” is an
abuse of language. Metaobjects are objects and objects are not called. Methods are called. The compiler
will in fact call some specific methods of the metaobject which are not specified in the metaobject. It
would be more precise to say that the metaobject is employed in the code in a line as

var t = @text(<+ ... +>);

The metaobject may return a string of characters that is the Cyan code corresponding to the metaob-
ject call. It does so in the call to text. It does not in the call to checkStyle (which does not generate
code). Instead of returning a string, the metaobject method may return a modified AST of the prototype
or the method (in case of log). Metaobject log would add code to the start of the method to log how
many times it was called. This information would be available to other parts of the code. Again, a
metaobject does not return anything. It is an object. What happens is that a method of the metaobject,
not specified in the code, is called and it returns something.

User-Defined Literal Objects

Cyan supports user-defined literal objects. One can define a literal object delimited by <+( and )+> by
a call to the pre-defined metaobject literalObject:

@literalObject<<

start: "<+("

parse: ParseList

>>

After parse: there should appear the name of a Java class that should have methods to parse the
text that appear between the delimiters. In the source code that appears textually below the call to
literalObject, one could write

var myList = <+( 1, "Hi", 3, 5, true )+>;

The text “ 1, "Hi", 3, 5, true ” will be passed as an argument to a method, say parseRetString,
of the Java class ParseList. This method would return a string that replaces
<+( 1, "Hi", 3, 5, true )+>

literalObject supports several other options beside start: and parse:. Some of them allow one
to define a metaobject using a regular expression just like a grammar method. Using this form, it is easy
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to define, for example, a literal dictionary:

var dict = {* "Copernicus":"astronomy"

"Gauss":"math"

"Galenus":"medicine" *};

This literal object would be defined as

@literalObject<<

start: "{*"

regexpr: ( String ":" String )*

type: ListStringString

addAll: List<String, String>

>>

It is possible to define named literal objects that resemble metaobjects but are not directly related
to them. For example, the literal dictionary could have a name Dict. It would be used as

var dict1 = Dict{* "Copernicus":"astronomy" "Gauss":"math" *};

var number = Dict<<@ "one":1 "two":2 @>>;

The start and end symbols can vary from literal to literal as in this example. The only requirement is
that the end is the mirror of the start.

Linking Past-Future

The source code of a Cyan program can be given in XML (Chapter 2). When a source file is compiled,
the compiler can write some information of the current version of the code in this XML file, which also
contains the code. In future compilations the compiler can issue warning messages based on the previous
versions of the code. For example, if the current version of a prototype changed the order of an overloaded
method in relation of a previous version, the compiler may warn that some message sends may call know
a method different from what it called in the previous version. As an example, suppose the first version
of a prototype is as given below. Manager inherits from Worker.

object Company

fun pay: Manager manager { manager deposit: 9000 }

fun pay: Worker worker {

// pay worker, the details are not important

}

...

end

A message send
Company pay: Manager;

calls the first method of Company as expected. However, if the pay method are textually exchanged, the
method called will be pay: Worker. This may be terrible consequences. The compiler could warn that
this change may have introduced a bug in the program. See more about this in Section 4.5.

Another example of use of the past is when there is a sequence of if´s that test for the prototype of
a variable:

var Person v;

...

if v isA: Student {
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...

}

else if v isA: Worker {

...

}

Here Person is an abstract prototype whose only sub-prototypes are Student and Worker. Then the
cascaded if statements cover all cases. However, when another sub-prototype of Person is created, this
is no longer the case. The compiler or another tool could warn this based on the information kept in the
XML file that contains the source code.
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Chapter 2

Packages and File organization

We will call “program unit” a prototype declaration or interface. Every source file is a “compilation unit”
and may contain one or more prototype declarations. Exactly one of them should be public. The others
should be private. Then compilation units are “source files” each one containing one or more prototypes.

A Cyan program is divided in compilation units, program units, and packages that keep the following
relationship:

(a) every file, with extension .cyan, declare exactly one public or one protected program unit (but not
both) and any number of private program units. Keywords public, protected, and private may
precede the program unit to indicate that it is public, protected, or private:

...

public object Person

public String name

... // methods

end

If no qualifier is used before “object”, then it is considered public. A protected program unit is only
visible in its package. A private program unit can only be used in the file in which it is declared. No
private entities can appear in the public part of a public or protected entity. So the following code
is illegal:

...

private object ListElement

public Int item

public ListElement next

end

public object List

private ListElement head

// oops ... private prototype in the public

// interface of method getHead

public ListElement getHead { ^head };

... // other methods

end

The prototypes (which includes interfaces) defined in a source file hide any prototypes imported in
the source file. So it is legal to define a prototype Test in a source file and import another prototype
Test from a package.
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(b) every file should begin with a package declaration as “package ast” in

package ast

object Variable

public String name

public Type type

... // methods

end

All objects and interfaces declared in that file will belong to the package “ast”;

(c) a package is composed by program units spread in one or more source files. The name of a package
can be composed by identifiers separated by “.”. All the source files of a package should be in the
same directory. The source files of a package id1.id2. ... idn should be in a directory idn which is
a sub-directory of id(n-1), and so on. There may be packages id1.id2 and id1.id3 that share a
directory id1. Although a directory is shared, the packages are unrelated to each other.

(d) a Cyan source file is described in XML and has the following structure:

<?xml version="1.0"?>

<cyanfile>

<cyansource>

package ast

object Variable

public String name

public Type type

... // methods

end

</cyansource>

<!-- here comes other elements -->

</cyanfile>

The root XML element is cyanfile. There is child of cyanfile called cyansource that contains the
source code in Cyan of that file. After that comes other elements. What exactly there are is yet to be
defined. Certainly there will be elements that keep the interfaces of all prototypes that every prototype
of this file uses. An object interface is composed by the signatures of its public methods. The signature
of a method is composed by its selectors, parameter types, and return value type. This information will
be put in the XML file by the compiler. The information stored in the XML file can be used to catch
errors at compile time that would otherwise go undetected or to improve current error messages. Based
in this information, the compiler could check:

(a) if the textual order of declaration of multi-methods1 was changed;

(b) if the return value type of methods was changed (to replace a return value type T by its subtype S is
ok. The opposite may introduce errors.);

(c) if methods were added to multi-methods;

1Methods with the same name but different parameter types or number of parameters in each selector.
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(d) if the textual order of declaration of the instance variables was changed. This is important for
metaobject @init when it is called without parameters (See page 73);

(e) if the type of a parameter of a generic prototype was changed. This can invalidate uses of the generic
prototype.

Another use of the XML file would be to store information collected at runtime. The compiler could
insert code that checks, for example, if the numbers stored in Int variables are dangerous near the limits
allowed by this type. In the next compilation the programmer would receive a warning that Int should
be changed to a library prototype “BigInt”.

The compiler could also put in one of the XML elements the restrictions that a generic parameter
type should obey. For example, a generic object

object TwoItems<T>

fun set: (T a, T b) { self.a = a; self.b = b; }

fun max -> T {

return (a > b) f: a f: b

}

private T a, b

end

would keep, in the XML file, that generic parameter T should support the operator <.
To know one more Cyan feature that uses the XML file, see page 115 on metaobject onChangeWarn.
If the source file does not start with <?xml, then it is assumed that the text contains only source code

in Cyan. Then it is optional to put or not the source code in a XML file.
A package is a collection of prototype declarations and interfaces. Every public Cyan prototype

declared as object ObjectName ... end must be in a file called “ObjectName.cyan” (even if it is a
XML file). Preceding the object declaration there must appear a package declaration of the form package

packageName as in the example given above.
Program units defined in a package packB can be used in a source file of a package packA using the

import declaration:

package packA

import packB

object Program

fun run {

...

}

end

The public program units of package packB are visible in the whole source file. A program unit declared
in this source file may have the same name as an imported program unit. The local one takes precedence.
’;’ is optional after the package name and the import list.

More than one package may be imported; that is, the word import may be followed by a list of package
names separated by comma. It is legal to import two packages that define two resources (currently, only
prototypes) with the same name. However, to use one identifier (program unit) imported from two or
more packages it is necessary to prefix it with the package name. See the example below.

package pA
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import pB, pC, pD

object Main

fun doSomething {

var pB.Person p1; // Person is an object in both packages

var pD.Person p2;

...

}

end

This same rule applies when package pA and pB define resources with the same name.
An object or interface can be used in a file without importing the package in which it was defined.

But in this case the identifier should be prefixed by the package name:
var v = ast.Variable;

var gui.Window window;

There is a package called cyan.lang which is imported automatically by every file. This package
defines all the basic types, arrays, prototype System, function objects, tuples, unions, etc. See Chapter 8.

A program is described by a file with extension “cyanp”. This file contains code of a Domain Specific
Language called CPL (Cyan Package Language) whose grammar is below. Some itens are not described
in the grammar: LeftCharString, QualifId, RightCharString, TEXT, and FileName. LeftCharString is
any sequence of the symbols

= ! $ % & * - + ^ ~ ? / : . \ | ( [ { <

Note that >, ), ], and } are missing from this list. RightCharString is any sequence of the same symbols
of LeftCharString but with >, ), ], and } replacing <, (, [, and {, respectively. The compiler will check
if the closing RightCharString of a LeftCharString is the inverse of it.

QualifId is a sequence of one or more Cyan identifiers separated by “.”. An identifier is a sequence of
letters, digits, underscore starting with a letter or underscore. The underscore alone is not considered an
identifier. TEXT is any text. It may include any character but end-of-file. FileName is a string with a
file name. The character “\” or “/” is used to separate directories (folders). Any one of these characters
may be used. “\x” is not considered a escape character for any x. Then a FileName can be

"C:\Cyan Material\lib\cyan\lang"

The grammar of CPL follows.

Program ::= [ ImportList ] [ CTMOCallList ] “program” [ AtFolder ]
[ “main” QualifId ]
{ CTMOCallList Package }

ImportList ::= FileName { “,” FileName }
Package ::= “package” QualifId [ AtFolder ]
AtFolder ::= “at” FileName
CTMOCallList ::= { CTMOCall }
CTMOCall ::= (“@” | “@@” ) Id [ LeftCharString TEXT RightCharString ]
QualifId ::= { Id “.” } Id

As an example, a program in CPL is
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@checkStyle

@option(addQualifier)

program at "C:\Cyan\example01"

main main.Program

@option(no_dynamic) package bank at "C:\Cyan\tests\Bank"

package cyan.util at "C:\Cyan\"

package account

Keyword program starts the project. Optionally “at” specifies the path of the program. If not
specified, the default directory is that in which the project file is. After it keyword main may appear.
It specifies the full path of the main prototype; that is, its package “.” its name. The execution starts
in method run of this prototype. If not specified, execution will start at prototype Program of package
main. After program or main (if present), there should appear one or more packages descriptions.

A package description is keyword package, the package name, and optionally “at” followed by a
string with the package directory. All source files of a package should be in the same directory. The
compiler considers that the package is in a directory whose name is the package name with “.” replaced
by / or \ (it depends on the separator the operating system uses). In Windows, a package cyan.util

should be in a directory (folder) “cyan\lang”. This directory is in the package directory, which is that
specified by “at” or the program directory (if there is no keyword “at” for the package). As examples,
package cyan.util is in directory

C:\Cyan\cyan\util

and package account is in directory
C:\Cyan\example01\account

In the directory of a package there should be zero or more cyan source files. These are of several
kinds:

(a) a file name “Name.cyan” should contain a public prototype Name. There are special rules for generic
prototypes — see Chapter 7;

(b) the file name stars with “-”. It is a collection of public prototypes. The compiler will create for each
of them a source file starting with “--” in the same directory as the original file. All will import the
same packages.

The compiler may be called passing a source file as parameter. The compiler will compile and call
method run: Array<String> of this file. It should be self-suficient. Optionally, the file name can starts
with the “source name” followed by “-”. After “-” there may appear the name of a prototype. The
file should have extension “.cyan”. The compiler will consider that the code inside this file belongs to
a prototype whose name is “source name” that inherits from the prototype whose name appears after
“-”. For example, if the file name is “MyScan-lib.Script.cyan”, the compiler will create a prototype
MyScan and make it inherit from lib.Script. The source code may be of two kinds: (a) a sequence of
methods starting with keyword fun (optionally preceded by public, private, or protected) or (b) a
sequence of statements. In the first case these methods will be put in prototype MyScan. In the second
case the compiler will create a public method run: Array<String>and put the statements inside it.
Some packages will be automatically imported (which ones are yet to be defined). And the prototype
will be a dynamically-typed one. That is, variables, parameters, and methods are not demanded to be
declared with types — see metaobject @dynAlwas in Chapter 6. In the example, MyScan will be attached
to metaobject @dynAlwas.

The program and the packages may be preceded by zero or more metaobject calls. These are of the
for @meta in which meta is the metaobject name. These calls may have parameters and an attached text.
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See Chapter 5 for more details. In particular, the compiler options should be parameters of a metaobject
options.

ImportList is a list of file names that are imported by this project. These file names should be the
directories of projects. Only the metaobjects of these projects are imported.
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Chapter 3

Basic Elements

This chapter describes some basic facts on Cyan such as identifiers, number literals, strings, operators,
and statements (assignment, loops, etc). First of all, the program execution starts in a method called
run (without parameters or return value) or

run: Array<String>

of a prototype specified at compile-time through the compiler or IDE option. Type Array<String> is an
array of strings. The arguments to run are those passed to the program when it is called. In this text
(all of it) we usually call Program the prototype in which the program execution starts. But the name
can be anyone. The program that follows prints all arguments passed to it when it is called.

package main

object Program

fun run: Array<String> args {

args foreach: { (: String elem :)

Out println: elem

}

}

end

3.1 Identifiers

Identifiers should be composed by letters, numbers, and underscore and they should start with a letter
or underscore. However, a single underscore is not considered a valid identifier. Upper and lower case
letters are considered different.

var Int _one;

var Long one000;

var Float ___0;

It is expected that the compiler issues a warning if two identifiers visible in the same scope differ only in
the case of the letters as “one” and “One”.

3.2 Comments

Comments are parts of the text ignored by the compiler. Cyan supports three kinds of comments:
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• anything between /* and */. Nested comments are allowed. That is, the comment below ends at
line 3.

1 /* this is a /* nested

2 comment */

3 that ends here */

• anything after // till the end of the line;

• compiler-inserted comments of the form /*# .... #*/. The compiler is free to insert and remove
this comments at any time.

A comment may appear anywhere (maybe this will change). A comment is replaced by the compiler by
a single space.

var value = 1/* does value holds 10? */0;

This code is the same as var value = 1 0 and therefore it causes a compile-time error instead of being
an assignment of 10 to value.

3.3 Keywords

Cyan uses the following keywords:

abstract char enum implements long override slot void

Any const extends import macro package stackalloc volatile

Array default false in match private String when

Boolean delegate final Int protected switch where

boolean Double Float int mixin public true while

break double float interface mutable return type with

Byte Dyn for it Nil self val

byte each fun let null shared var

case else heapalloc local object Short virtual

Char end if Long of short Void

Each of them should be preceded by space, the beginning of a line, or ’(’ except Nil, Boolean, Char, Byte,
Int, Short, Long, Float, Double, String, self, true, and false. Each of them should be followed by
space, end of line, end of file, or ’)’. A space is a character that makes method Character.isWhiteSpace(char

ch) of Java return true.
Note that a lot of reserved words are not currently used in the language.

3.4 Assignments

An assignment is made with “=” as in
x = expr;

After this statement is executed, variable x refer to the object that resulted in the evaluation of expr
at runtime. The compile-time type of expr should be a subtype of the compile-time type of x. See
Section 4.16 for a definition of subtype.

A variable may be declared and assigned a value:
var x = expr;
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The type of x will be the compile-time type of expr. Both the type of the variable and the expression
can be supplied:

var Int x = 100;

However, the compiler will issue a warning unless expr is:

(a) a literal of a basic type, including String, Nil, or a prototype;

(b) a message send whose selector is clone, new or new:. That includes implicit message sends to new

or new: such as “Person("Lı́via", 7)”. These concepts will be seen later;

(c) a message send whose method, found at compile time, has an attached metaobject called typedClearly.
That is, in “person = club president”, the compiler searches in the compile-time type of club for
method president. If it does not find a method, there is an error. If it finds one, this metaobject
will prevent the compiler from issuing a warning. All methods that have a clearly defined return type
can be declared with this metaobject. For example, @clearlyType is attached to method readInt

of prototype In. It is very clear that this method returns an Int.

Cyan supports a restricted form of multiple assignments. There may be any number of comma
separated assignable expressions in the left-hand side of “=” if the right-hand side is a tuple (named or
unnamed) with the compatible types. That is, it is legal to write

v1, v2, ..., vn = tuple

if tuple is a tuple with at least n fields and the type of field number i (starting with 1) is a subtype of
the type of vi.

var Float x, y;

x, y = [. 1280, 720 .];

var tuple = [. 1920, 1080 .];

x, y = tuple;

However, a variable cannot be declared in a multiple assignment:
var x, y = [. 1280, 720 .]

The compiler would sign an error in this code.
The assignment “v1, v2, ..., vn = tuple” is equivalent to

// tuple may be an expression

var tmp = tuple;

vn = tmp fn;

...

v2 = tmp f2;

v1 = tmp f1;

A multiple assignment is an expression that returns the value of the first left-hand side variable, which
is v1 in this example.

A method may simulate the return of several values using tuples.

object Circle

fun getCenter -> NTuple<x, Float, y, Float> {

return [. x, y .]

}

...

private Float x, y // center of the circle

49



private Float radius

end

...

var Float x, y;

x, y = Circle getCenter;

3.5 Basic Types

Cyan has one basic type, starting with an upper case letter, for each of the basic types of Java: Byte,
Short, Int, Long, Float, Double, Char, and Boolean.

Unless said otherwise, Cyan literals of the basic types are defined as those of Java. In particular, the
numeric types have the same ranges as the corresponding Java types. Byte, Short, and Long literals
should end with B or Byte, S or Short, and L or Long, respectively as in

var aByte = 7B;

var aShort = 29Short;

var aLong = 1234567L;

var bLong = 37Long;

var anInt = 223Int;

Int literals may optionally end with I or Int. All basic types inherit from Any. Therefore there are not
two separate hierarchies for basic and normal types. All types obey “reference” semantics. Conceptually,
every object is allocated in the heap. However, objects of basic types such as 1, 3.1415, and true are
allocated in the stack most of the time.

Integral literal numbers without a postfixed letter are considered as having type Int. Numbers with
a dot such as 10.0 as considered as Float´s. Float literals can end with F or Float. Double literals
should end with D or Double. There is no automatic conversion between types:

var Int age;

var Byte byte;

var Float height;

// ok

age = 21;

// compile-time error, 0 is Int

byte = 0;

// ok

byte = 0B;

// ok

height = 1.65;

// compile-time error

height = 1;

// ok

height = 1F;

Underscores can be used to separate long numbers as in
1_000_000

Two underscores cannot appear together as in
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1__0

The first symbol cannot be an underscore: _1_000 would be considered an identifier by the compiler.
The Boolean type has two enumerated constants, false and true, with false < true. When false

is cast to an Int, the value returned is 0. true is cast to 1. Char literals are given between ’ as in
’A’ ’#’ ’\n’

Prototype Nil has a special status in the language. It is the only prototype that does not inherit from
Any, the super-prototype of anyone (this will be explained latter). Nil is not supertype or subtype of
anything. Then to a variable of type Nil can only be assigned prototype Nil and it can only be assigned
to a variable or parameter of type Nil. Of course, Nil cannot be inherit from a prototype.

Methods that do not declare a return type, as
fun set: Int newValue { ... }

in fact return a value of type Nil. Therefore this declaration is equivalent to
fun set: Int newValue -> Nil { ... }

Any method that has Nil as the return type always return Nil at the end of its execution. The return

statement (explained later) is required in methods that return anything other than Nil.
Since Nil does not have subtypes, a method returning Nil can be implemented as not returning a

value. After all, it always return the same value.
Prototype String represents a read-only string. It has several methods such as at: [] (for indexing)

and == (equality). A literal string should be given enclosed by " as in C/C++/Java: "Hi, this is a string",
"um", "ended by newline\n". Cyan strings and literal characters support the same escape characters
as Java. A literal string may start with n" to disable any escape character inside the string:

var fileName = n"D:\User\Carol\My Texts\text01"

In this case “\t” do not mean the tab character. Of course, this kind of string cannot contain the
character ’"’.

Types Byte, Short, Int, Long, Float, and Double support almost the same set of arithmetical and
logical operators as the corresponding types of Java. We show just the interface of Int. Types Float

and Double do not support methods &, |, ~|, and !. All basic types are automatically included in every
Cyan source code because they belong to package cyan.lang.

package cyan.lang

// method bodies elided

final object Int

fun ++

fun --

fun + (Int other) -> Int

fun - (Int other) -> Int

fun * (Int other) -> Int

fun / (Int other) -> Int

fun % (Int other) -> Int

fun < (Int other) -> Boolean

fun <= (Int other) -> Boolean

fun > (Int other) -> Boolean

fun >= (Int other) -> Boolean

fun == (Int other) -> Boolean

fun != (Int other) -> Boolean

fun === (Int other) -> Boolean
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fun <=> (Int other) -> Int

fun .. (Int theEnd) -> Interval<Int>

fun ..< (Int theEnd) -> Interval<Int>

fun - -> Int

fun + -> Int

// and bit to bit

fun & (Int other) -> Int

// or bit to bit

fun | (Int other) -> Int

// exclusive or bit to bit

fun ~| (Int other) -> Int

// binary not

fun ~ -> Int

// left shift. The same as << in Java

fun <.< (Int other) -> Int

// right shift. The same as >> in Java

fun >.> (Int other) -> Int

// right shift. The same as >>> in Java

fun >.>> (Int other) -> Int

fun cast: (Any other) -> Int

fun asByte -> Byte

fun asShort -> Short

fun asLong -> Long

fun asFloat -> Float

fun asDouble -> Double

fun asChar -> Char

fun asBoolean -> Boolean

fun asString -> String

fun to: (Int max) do: (Function<Nil> b)

fun to: (Int max) do: (Function<Int, Nil> b)

fun to: (Int max) do: (InjectObject<Int> injectTo)

fun repeat: Function<Nil> b

fun repeat: Function<Int, Nil> b

fun to: (Int max)

fun in: (Iterable<Int> container) -> Boolean

fun in: Interval<Int> inter -> Boolean

end

...

abstract object InjectObject<T> extends Function<Nil>

abstract fun eval: T

abstract fun result -> T

end

interface Iterable<T>

fun foreach: Function<T, Nil>
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fun apply: (String message)

fun .* (String message)

fun .+ (String message) -> Any

end

Variables of types Byte, Char, Short, Int, and Long may be preceded by ++ or --. When v is a private
instance variable or a local variable, the compiler will replace ++v by

(v = v + 1)

Idem for --. When v is a public or protected instance variable, ++v is replaced by
(v: (v + 1))

If v is public, ++v can only occur inside the prototype in which v is declared. If it is protected, ++v can
only appear in sub-prototypes of the prototype in which it is declared.

A prototype may declare an operator [] and use it just like an array (see Section 4.9). A variable
whose type support both “at: []” and “at: [] put:” methods can be used with ++. Then ++v[expr]

is replaced by

// tmp1 and tmp2 are temporary variables

var tmp1 = expr;

var tmp2 = v[tmp1] + 1;

v[tmp1] = tmp2;

Each basic prototype T but Float and Double has an in: method that accepts an object that
implements Iterable<T> as parameter. This call method foreach: of this parameter comparing each
element with self. It returns true if there is an element equal to self. It can be used as in

var Char ch;

ch = In readChar;

( ch in: {# ’a’, ’e’, ’i’, ’o’, ’u’ #} ) ifTrue: {

Out println: "#ch is a vowel"

};

var Array<Int> intArray = {# 0, 1, 2, 3 #};

var List<Int> intList = List<Int> new;

intList add: 0;

intList add: 1;

var Int n = In readInt;

if n in: intArray || n in: intList {

Out println: "#n is already in the lists"

}

The parameter to in: can be any object that implements Iterable of the correct type. In particular,
all arrays whose elements are of a basic type implement this interface.

Each basic prototype T but Float and Double has an in: method that accepts an interval as param-
eter:

var Char ch;

ch = In readChar;

( ch in: ’a’..’z’ ) ifTrue: {

Out println: "#ch is a lower case letter"

};

var age = In readInt;

if age in: 0..2 { Out println: "baby" }

else if age in: 3..12 {
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Out println: "child"

}

else if age in: 13..19 {

Out println: "teenager"

}

else {

Out println: "adult"

}

Prototype Boolean has the logical operators && (and), || (or), and ! (not). Every method that starts
with ! is a prefixed unary method.

if ! ok { Out println: "fail" }

if age < 0 || age > 127 { Out println: "out of limits" }

if index < array size && array[index] == x {

Out println: "found #{x}"

}

In the last statement, there is a problem: the argument to && will be evaluated even if “index < array size”
is false, causing the runtime error “array index out of bounds”. To prevent this error, the expression
on the right of && should be put in a function.

if ! ok { Out println: "fail" }

// no need of a function here

if age < 0 || { ^ age > 127 } { Out println: "out of limits" }

if index < array size && { ^array[index] == x } {

Out println: "found #{x}"

}

In the Boolean prototype, there are methods && and || that take a function as parameter. These methods
implement short-circuit evaluation.

package cyan.lang

public final object Boolean

fun && (Boolean other) -> Boolean

// short-circuit evaluation

fun && (Function<Boolean> other) -> Boolean

fun || (Boolean other) -> Boolean

fun || (Function<Boolean> other) -> Boolean

fun ! -> Boolean

fun < (Boolean other) -> Boolean

fun <= (Boolean other) -> Boolean

fun > (Boolean other) -> Boolean

fun >= (Boolean other) -> Boolean

fun == (Boolean other) -> Boolean

fun != (Boolean other) -> Boolean

fun - (Boolean other) -> Int

fun ++

fun --

fun cast: (Any other) -> Boolean

fun asInt -> Int
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fun asString -> String

fun to: (Boolean max) do: (Function<Nil> b)

fun to: (Boolean max) do: (Function<Boolean, Nil> b)

fun ifTrue: (Function<Nil> trueBlock)

fun ifFalse: (Function<Nil> falseBlock)

fun ifTrue: (Function<Nil> trueBlock) ifFalse: (Function<Nil> falseBlock)

fun ifFalse: (Function<Nil> falseBlock) ifTrue: (Function<Nil> trueBlock)

@checkTF

fun t: (Any trueValue) f: (Any falseValue) -> Any

@checkTF

fun f: (Any falseValue) t: (Any trueValue) -> Any

end

Prototype Char has the usual methods expected for a character.

package cyan.lang

public final object Char

fun ++

fun --

fun < (Char other) -> Boolean

fun <= (Char other) -> Boolean

fun > (Char other) -> Boolean

fun >= (Char other) -> Boolean

fun == (Char other) -> Boolean

fun != (Char other) -> Boolean

fun === (Char other) -> Boolean

fun <=> (Char other) -> Int

fun .. (Char theEnd) -> Interval<Char>

fun ..< (Char theEnd) -> Interval<Char>

fun pred -> Char

fun suc -> Char

fun - (Char other) -> Int

fun cast: (Any other) -> Char

fun asByte -> Byte

fun asInt -> Int

fun asShort -> Short

fun asLong -> Long

fun asBoolean -> Boolean

fun asString -> String

fun to: (Char max) do: (Function<Nil> b)

fun to: (Char max) do: (Function<Char, Nil> b)

fun in: (Iterable<Char> container) -> Boolean

fun in: Interval<Char> inter -> Boolean

end

Prototype String support the concatenation method + and the in: method:

fun daysMonth: (String month, Int year) -> Int {

if month in: {# "jan", "mar", "may", "jul", "aug", "oct", "dec" #} {
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Figure 3.1: Precedence order from the lower (top) to the higher (bottom)

return 31

}

else if month in: {# "apr", "jun", "sep", "nov" #} {

return 30

}

else if month == "fev" {

return Int cast: ((leapYear: year) t: 29 f: 28)

}

else {

return -1

}

}

Other methods from this prototype will be defined in due time. Maybe the String class of Java will be
used as the String prototype of Cyan.

3.6 Operator and Selector Precedence

Cyan has special precedence rules for methods whose names are the symbols given in Figure 3.1. The
meaning of these methods is given in the declaration of the basic types that use them (see page 51). The
precedence is applied to every message send that uses some of these symbols. So a message send

x + 1 < y + 2 will be considered as if it was
(x + 1) < (y + 2)

Then when we write

if age < 0 || age > 127 { Out println: "out of limits" }

if index < array size && array[index] == x {

Out println: "found #{x}"

}

the compiler interprets this as

if (age < 0) || (age > 127) { Out println: "out of limits" }

if (index < array size) && (array[index] == x) {
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Out println: "found #{x}"

}

In a message send, unary selectors have precedence over multiple selectors. Then
obj a: array size

is the same as
obj a: (array size)

Every operator but +, -, ++, --, *, /, %, ~, !, .., and ..< should be preceded and followed by a white
space. That is, all binary operators but the arithmetical ones (+, -, *, /, %) should be surrounded by
white spaces. Note that not all operators are used by the Cyan basic types (.*, for example).

Unary methods associate from left to right. Then
var String name = club members first name;

is the same as:
var String name = ((club members) first) name;

The method names of the last line of the Figure 3.1 are unary. All other methods are binary and left
associative. That means a code

ok = i >= 0 && i < size && v[i] == x;

is interpreted as
(ok = i >= 0 && i < size) && v[i] == x;

This is true even when Boolean is not the type of the receiver.
The compiler does not check the type of the receiver in order to discover how many parameters each

selector should use. When the compiler finds something like

obj s1: 1 s2: 1, 2 s3: 1, 2, 3

it considers that the method name is s1:s2:s3 and that si takes i parameters. This conclusion is taken
without consulting the type of obj. Therefore, code

// get: takes two parameters

var k = matrix get: (anArray at: 0), 1;

cannot be written

var k = matrix get: anArray at: 0, 1;

This would mean that the method to be called is named get:at: and that get: receives one parameter,
anArray, and at: receives two arguments, 0 and 1. To know the reason of this rule, see Chapter 6.

3.7 Loops, Ifs, and other Statements

Currently each statement or local variable declaration should end with a semicolon (“;”). However we
expect to make the semicolon optional as soon as possible.

Decision and loop statements are not really necessary in Cyan. As in Smalltalk, they can be imple-
mented as message sends to Boolean objects and to function objects. There are four methods of prototype
Boolean used as decision statements: ifTrue:, ifFalse:, ifTrue:ifFalse:, and ifFalse:ifTrue:.

( n%2 == 0 ) ifTrue: { s = "even" };

( n%2 != 0 ) ifFalse: { s = "even" };

( n%2 == 0 ) ifTrue: { s = "even" } ifFalse: { s = "odd" } ;

( n%2 != 0 ) ifFalse: { s = "even" } ifTrue: { s = "odd" } ;
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They are self explanatory. Besides that, there are methods in Boolean that return an expression or
another according to the receiver:

s = String cast: (( n%2 == 0 ) t: "even" f: "odd");

s = String cast: (( n%2 != 0 ) f: "even" t: "odd");

If the expression is true, the expression that is parameter to t: is returned. Otherwise it is returned
the parameter to f:. A metaobject (Chapter 5) checkTF checks whether the arguments of both selectors
have the same type1 (both are strings in this case). However, the return value type of this method is Any
and therefore a cast is needed.

Function objects that return a Boolean value have a whileTrue: and a whileFalse: methods.

var i = 0;

{^ i < 5 } whileTrue: {

Out println: i;

++i

}

var i = 0;

{^ i >= 5 } whileFalse: {

Out println: i;

++i

}

Of course, whileTrue calls the function passed as parameter while the function that receives the message
is true. whileFalse calls while the receiver is false.

The if and the while statements were added to the language to make programming easier. The
syntax of these statements is shown in this example:

if n%2 == 0 {

s = "even"

}

else { // the else part is optional

s = "odd"

};

var i = 0;

while i < 5 {

Out println: i;

++i

}

Cascaded if´s are possible:

if age < 3 {

s = "baby"

}

else if age <= 12 {

s = "child"

}

else if age <= 19 {

s = "teenager"

}

1For the time being, one cannot be subtype of another.

58



else {

s = "adult"

};

Unlike the languages of the C family, the parentheses around the boolean expression are not necessary.
There are other kinds of loop statements, which are supplied as message sends:

i = 0;

// the function is called forever, it never stops

{

++i;

Out println: i

} loop;

var i = 0;

{

if v[i] = x {

return i;

}

++i

} repeatUntil {^ i >= size];

// the function is called till i >= size

Prototype Int also defines some methods that act like loop statements:

// this code prints numbers 0 1 2

var i = 0;

3 repeat: {

Out println: i;

++i

};

// this code prints numbers 0 1 2

3 repeat: { (: Int j :)

Out println: j

};

var aFunction = { (: Int j :) Out println: j };

// this code prints numbers 0 1 2

3 repeat: aFunction;

// prints 0 1 2

i = 0;

1 to: 3 do: {

Out println: i;

++i

};

// prints 0 1 2

0 to: 2 do: { (: Int j :)

Out println: j

};

Prototype Char also has equivalent repeat: and to:do: methods:
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’a’ to: ’z’ do: { (: Char ch :)

Out println: ch

};

Prototype Any, the super-prototype of every object, defines a grammar method (see Chapter 9) that
can be used as a C-like switch statement:

var n = In readInt;

if n >= 0 && n <= 6 {

n

case: 0 do: {

Out println: "zero"

}

case: 1 do: {

Out println: "one"

}

case: 2, 3, 5 do: {

Out println: "prime"

}

else: {

Out println: "four or six"

}

};

var Int command;

var String strCmd = In readLine;

strCmd

case: "on" do: { command = 1 }

case: "off" do: { command = 2 }

case: "left" do: { command = 3 }

case: "right" do: { command = 4 }

case: "move" do: { command = 5 }

else: { command = 1 }

A metaobject attached to this method checks whether the expressions after case: have the same type
as the receiver. The function after do: is of type Function<Nil> (no parameters or return value). This
grammar method uses method isCase: of case value to find the correct do: function to call. Therefore
this “case:do:” method works even with non-basic type objects. Prototype Any, the super-prototype of
everyone, defines isCase: to be equal to ==.

The isCase: method makes case:do: very flexible as can be seen by the examples below.

var str = In readLine;

str

case: /[A-Z]+0/ do: {

"upper case and zero" println

}

case: "true" do: {

"true" println

}

case: {# "one", "two" #} do: {

"1 or 2" println
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};

var n = In readInt;

n

case: 0..2 do: {

"baby" println

}

case: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 do: {

"child" println;

}

case: 13..19 do: {

"teenager" println

}

else: {

"adult" println;

};

In the first case:do: we used a literal regular expression /[A-Z]+0/ which should have a methot isCase:
that takes a String as parameter and returns true if the string matches the regular expression. In the
same way, arrays such as {# "one", "two" #} should define an isCase: method that take a string as
parameter and returns true if the string belongs to the array.

3.8 Arrays

Array is a generic prototype that cannot be inherited for sake of efficiency. It has methods that mirror
those of class ArrayList of Java:

package cyan.lang

final object Array<T> implements Iterable<T>

fun init {

fun init: (Int intSizeArray) {

fun add: (T elem) {

fun add: (Int i, T elem) {

fun clear {

fun isEmpty -> Boolean {

fun remove: (Int i) {

fun [] at: Int index -> T {

fun [] at: Int index put: (T elem) {

fun slice: (Interval<Int> interval) -> Array<T> {

fun concat: Array<T> other -> Array<T> {

fun size -> Int {

fun foreach: Function<T, Nil> b {

fun apply: (CySymbol message) select: (CySymbol slot) {

fun apply: (String message) -> Dyn {

fun .* (String message) {

fun .+ (String message) -> Any {

end
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Arrays supports some interesting methods: apply:, .*, and .+. The first one applies an operation
given as string to all array elements:

var Array<Int> v = {# 2, 3, 5, 7, 11 #};

v apply: #print; // print all array elements

v .* #print; // print all array elements

(v .+ "+") print; // print the sum of all array elements

(v .+ "*") print; // print the multiplication of all array elements

Intervals can be arguments to at: which allows the slicing of arrays:

var letters = {# ’b’, ’a’, ’e’, ’i’, ’o’, ’u’, ’c’, ’d’ #};

var vowels = letters slice: 1..5;

// print a e i o u

Out println: vowels;

There is a prototype RawArray which corresponds to the usual array of C/C++/Java.

package cyan.lang

object RawArray<T>

fun init: (Int intSizeArray)

fun at: -> T { Int index }

fun at: { Int index }put: (T elem)

fun size -> Int

end
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Chapter 4

Objects

A prototype may declare zero or more slots, which can be variables, called instance variables, methods,
called instance methods, or constants. In Figure 4.1, there is one instance variable, name, and two
methods, getName and setName. Keywords public, private, or protected should precede each slot
declaration. A public slot can be accessed anywhere the prototype can. A private one can only be used
inside the prototype declaration. Protected slots can be accessed in the prototype, its sub-prototypes,
sub-sub-prototypes, and so on. A sub-prototype inherits from a prototype — that will soon be explained.

In the declaration of an instance variable, there are four optional parts:

1. the visibility (public, protected, private);

2. keyword “var”, that may precede the type;

3. “;”, that may follow the declaration;

4. and “ = expr”, that may follow the variable name.

The only non-optional parts are the type and the name.
A prototype declaration is a literal object that exists since the start of the program execution. There

is no need to create a clone of it in order to use its slots.
Public or protected instance variables are allowed. In this case, the compiler creates public or pro-

tected get and set methods for a hidden variable that is only accessed, in the source code, by these
methods. If the source code declares a public instance variable instvar of type T, the compiler elimi-
nates this declaration and declares:

(a) a private instance variable _instvar (it is always underscore followed by the original name);

(b) methods

public T instvar { return _instvar }

public instvar: (: _newInstvar T) { _instvar = _newInstVar }

Methods instvar and instvar: are different. The compiler does not change the user source code. It
only changes the abstract syntax tree it uses internally.

Information on the slots can be accessed through the Introspective Reflection Library (IRL, yet to
be made). The IRL allows one to retrieve, for example, the slot names. The IRL will inform you that
a prototype with a public instance variable instvar has a private instance variable “_instvar” and
public methods instvar and instvar:. The same applies to protected variables, which are also accessed
through methods, as the public variables. In the declaration of a public instance variable, to it can be
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package bank

object Client

fun getName -> String {

^ self.name

}

fun setName: String name {

self.name = name

}

fun print {

Out println: name

}

private String name = ""

end

Figure 4.1: An object in Cyan

assigned an expression expr. In this case, this expression is assigned to the private instance variable
_instvar.

Inside the prototype, instvar should always be accessed through methods instvar and instvar:

since there is no variable instvar and _instvar is inaccessible:
Prototype Client could have been declared as

package bank

object Client

public String name = ""

fun print {

Out println: name

}

end

The instance variable should be used as in:

Client name: "Anna";

Out println: (Client name);

// compilation error in the lines below

Client.name = "Maria";

Out println: Client.name;

In future versions of Cyan it may be possible to access name as in
Client.name = "Maria";

To allow that, it would be necessary a syntax for grouping the get and set methods associated to a public
variable. Currently this syntax in unnecessary. To replace a public instance variable by methods it is only
necessary to delete the variable declaration and replace it by methods. It is expected that the compiler
helps the user in converting assignments like the above into

Client name: "Maria";

A method or prototype declared without a qualifier is considered public. An instance variable
without a qualifier is considered private. Then, a declaration
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package Bank

object Account

fun set: Client client {

self.client = client

}

fun print {

Out println: (client getName)

}

Client client

end

is equivalent to

package Bank

public object Account

fun set: Client client {

self.client = client

}

fun print {

Out println: (client getName)

}

private Client client

end

The declaration of local variables is made with the following syntax:

var String name;

var Int x1, y1, x2, y2;

The last line declares four variables of type Int. Keyword var is demanded in the declaration of local
variables.

var may be used before the declaration of an instance variable:

object Person

var String name

public var Int age

...

end

However, its use is optional.
The scope of a local variable is from where it was declared to the end of the function in which it was

declared:

1 fun p: Int x {

2 var String iLiveHere;

3 if x > 0 {

4 var Int iLiveInsideThenPart;

5 doSomething: {

6 var String iLiveOnlyInThisFunction;

7 ...

8 }
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9 ...

10 }

11 }

Then iLiveHere is accessible from line 2 to line 11 (before the }). Variable iLiveInsideThenPart is
live from line 4 to 10 (before the }). The scope of iLiveOnlyInThisFunction is the function that in
between lines 6 and 8 (after the declaration and before the }).

Although the scope of a local variable is limited, no two variables or parameters can have the same
name in a method. That includes parameters of anonymous functions.

The type of a variable should be a prototype or an interface (explained later). In the declaration
var String name;

prototype “String” plays the rôle of a type. Then a prototype name can play two rôles: objects and
types. If it appear in an expression, it is an object, as “String” in:

anObj = String;

If it appears as the type of a variable or return value type of a method, it is a type. Here “variable”
means local variable, parameter, or instance variable.

A local variable or an instance variable can be declared and assigned a value:
private var Int n = 0;

Both the type and the assigned value can be omitted, but not at the same time. If the type is omitted,
it is deduced from the expression at compile-time. If the expression is omitted, a default value for each
type is assigned to the variable. Therefore a variable always receive a value in its declarations. We call
this “definition of a variable” (instead of just “declaration”). When the type is omitted, the syntax

var variableName = expr

should be used to define the variable as in:
private var n = 0;

Variable variableName cannot be used inside expr. It it could, the compiler would not be able to deduce
the type of expr in some situations such as

var n = n;

In an assignment “var n = expr”, the type of the expression is deduced by the compiler using
information collected in the previous lines of code. The Hindley-Milner inference algorithm is not used.
In particular, the type of parameters and return value of methods are always demanded unless you are
using some kind of dynamic typing in Cyan (see Chapter 6 for details).

The default value assigned to a variable depends on its type and is given by the table:

type default value

Byte 0Byte

Short 0Short

Int 0Int

Long 0Long

Float 0Float

Double 0Double

Char ’\0’

Boolean false

String ""

others the prototype itself

Any type other than the basic types or String has the prototype itself as the default value. All
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prototypes, including the basic types, are objects in Cyan. Then Int is an object which happens to be
an ... integer! And which integer is Int? It is the default value of type Int. So the code below will print
0 at the output:

Out println: Int;

However, it is clearer to have a method that returns the default value. To every prototype P that is not
a basic type or String the compiler adds a method

fun defaultValue -> P { ^P }

if the user does not define this method herself. For basic types, the compiler returns the value of the
above table.

A method is declared with keyword fun followed by the method selectors and parameters, as shown
in Figure 4.1. Following Smalltalk, there are two kinds of methods in Cyan: unary and keyword methods.
A unary method does not take any parameters and may return a value. Its name may be an identifier

followed optionally by a “:” (which is not usual and is not allowed in Smalltalk). For example, print in
Figure 4.1 is a unary method.

When a method takes parameters its name should be followed by “:” (without spaces between the
identifier and this symbol). For example,

fun set: Client client { ... }

An optional return value type can be given after keyword fun. The return value should be given by
the return command or by an expression after “^” (which should be in the outer scope of the method
— that will be seen later). The return expression should be subtype (Section 4.16) of the return value
type of the method. Using Nil as the return value type is the same as to omit the return type.

Methods without return type or declaring Nil always return Nil. Therefore one can write

(0 println) println

“0 println” returns Nil. Message println is therefore sent to Nil. It will be printed
0Nil

Objects are used through methods and only through methods. A method is called when a message
is sent to an object. A message has the same shape as a method declaration but with the parameters
replaced by real arguments. Then method setName: of the example of Figure 4.1 is called by

Client setName: "John";

This statement causes method setName: of Client to be called at runtime.
There are two kinds of literal strings in Cyan: one is equal to those of C/C++/Java, "Hello world",

"n = 0\n", etc. This form allows one to put escape characteres in the string. The other kind of literal
string is using n" in the start of the string. This form disables any escape characters:

var fileName = n"c:\texts\readyToPrint\nightPoem.doc"

This means that the string is really
c:\texts\readyToPrint\nightPoem.doc

This kind of string is not really in the language. It is in fact a metaobject call to a metaobject of
package cyan.lang which is included in every Cyan source file.

Object CySymbol inherits from String and it is the prototype of all literal Cyan symbols. There
are two kinds of literal symbols. The first one is # followed, without spaces, by letters, digits, and any
number of :´s, as in

#f #age #age:

#123 #_0 #field001

#foreach:do:
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The second kind of literal symbol starts with #" and ends with " and obey the same restrictions as regular
literal strings:

#"Hello world - spaces are allowed"

#"valid: & \n this was a escape character"

#"1 + 2"

Method eq: of CySymbol returns true if the argument and self have the same contents. Method
eq: of String tests whether the objects are the same:

var s = "I am s";

var p = s;

assert: ( #name eq: #name );

// strings and symbols are of different prototypes

assert: ( #name neq: "name" ) ;

// s and p refer to the same object

assert: (s == p) && (s eq: p);

// s is not equal to "I am s" because they are different objects

// although they have the same contents

assert: !(s == "I am s");

Both String and CySymbol are final prototypes. This last prototype is the only prototype allowed
to extends the first. Weird but necessary.

4.1 Constants

A constant object can be defined inside an object using keyword const:

object Date

public const Int daysWeek = 7

public const Int daysMonth = {# 31, 28, 30, 31, 30, 31, 31, 30, 31, 30, 31 #}

public Int day, month, year

end

After const there should appear the type, constant name, “=”, and a value assignable to variables of the
given type. A value of type S is assignable to a variable of type T is S is T or S is a direct or indirect
sub-prototype of T.

The constant can be public, private, or protected and its type can be anyone. It should be initialized
at the declaration. The expression that initializes a constant is evaluated right before the prototype is
created, before the program execution. The constants are created in the textual order in which they are
declared:

object MyConstants

public const A first = A new

// second is created after first

public const Int second = (B new: 100) add: 5

end

The access to a constant is made as if it were a unary method:

var Int numberOfWeeks = (Date daysMonth)/(Date daysWeek);

The more usual syntax, “Date.daysMonth” is not supported because it would be ambiguous: it could
mean “the prototype daysMonth from package Date”.
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4.2 self

Inside a method of a prototype, pseudo-variable self can be used to refer to the object that received the
message that caused the execution of the method. This is the same concept as self of Smalltalk and
this of C++/Java. An instance variable age can be accessed in a method of a prototype by its name or
by the name preceded by “self.” as in

fun getAge -> Int {

^ self.age

}

Then we could have used just “age” in place of “self.age”.

4.3 clone Methods

A copy of an object is made with the clone method. Every prototype P has a method
fun clone -> P

that returns a shallow copy of the current object. In the shallow copy of the original to the cloned object,
every instance variable of the original object is assigned to the corresponding variable of the cloned object.

In the message send
Client setName: "John";

method setName of Client is called. Inside this method, any references to self is a reference to the
object that received the message, Client. In the last statement of

var Client c;

c = Client clone;

c setName: "Peter";

method setName declared in Client is called because c refer to a Client object (a copy of the original
Client object, the prototype). Now the reference to self inside setName refers to the object referenced
to by c, which is different from Client.

The clone method of an object can be redefined to provide a more meaningful clone operation. For
example, this method can be redefined to return self in an Earth prototype (since there is just one
earth) or to make a deep copy of the self object.

In language Omega [Bla94], the pseudo-type Same means the type of self, which may vary at
runtime. Method clone declared in the Object prototype returns a value of type Same. That means that
in object Object, the value returned is of type Object and that in a prototype P the return value type
of clone is P. In Cyan the compiler adds a new clone method for every prototype P. This is necessary
because there is nothing similar to Same in the language.

4.4 Shared Variables

A prototype may declare a variable as shared, as in

object Date

public Int day, month, year

public shared Date today

end

Variable today is shared among all Date objects. The clone message does not duplicate shared variables.
By that reason, we do not call shared variables “instance” variables.
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4.5 new, init, and initOnce Methods

It is possible to declare two or more methods with the same name if they have parameters with different
types. This concept, called overloading, will soon be explained. A prototype may declare one or more
methods named init or init:. All of them have special meaning: they are used for initializing the
object. For each method named init the compiler adds to the prototype a method named new with
the same selectors and parameter types. Each new method creates an object without initializing any of
its slots and calls the corresponding init method. If the prototype does not define any init or init:

method, the compiler supplies an empty init method that does not take parameters.
Some rules apply to the init and init: methods. They:

(a) should either be declared with Nil as the return type or with no return type (the default is Nil);

(b) should be public (this may change in the future). The compiler changes their visibility to protected,
although only direct descendents can call them;

(c) should not be preceded by keyword override;

(d) should not be abstract or final;

(e) should not be grammar methods (see Chapter 9);

(f) should not be indexing methods (See Section 4.9);

(g) can only be called inside the method in which they are declared or in immediate sub-prototypes.
That is, if C inherits from B that inherits from A, then C cannot call the init or init: methods of A.
To call the init or init: method of the prototype, use “init”, “init: args”, “self init”, or
“self init: args”. To call these methods of the immedidate super-prototype, use “super init”,
and “super init: args”.

It is legal to declare methods with the name new or new:. However, these methods should be public
and have the prototype as the return type.

object Test

fun new -> Test { return Test }

fun new: Int newValue -> Test {

var t Test = new;

t value: newValue;

return t

}

// this is illegal: return type is not Test

fun new: Float newValue -> Int {

return Int cast: newValue

}

public Int value

end

It is illegal to declare an init method with the same signature1 as a user-defined new method:

1Signature will be defined later. For now, assume that is composed by the method name, parameter types, and return
value types.
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object Test

// public is default

@prototypeCallOnly

fun new: Int k -> Test { ... }

// legal

fun init: String s { ... }

// illegal for there is a new

// method with the same parameters

fun init: Int n { ... }

end

init and init: methods can only be called by init and init: methods of the prototype in which
they were declared or in init methods of direct sub-prototypes of the prototype (the concept of sub-
prototype, inheritance, will soon be explained). To explain that, suppose a prototype A is inherited by
prototype B that is inherited by C. Then a init method of C cannot call a init method of A, which is
not a direct super-prototype of C. But a init method of B may call a init method of A. Although all
init and init: methods are “public”, the compiler changes all of them to “protected” so they can
only be called in message sends to self.

Methods new and new: are only accessible through prototype objects. That means an object returned
by new or new: cannot be used to create new objects of that prototype using “new:” or “new”:

object Test

@prototypeCallOnly

fun new: Int k -> Test { ... }

// legal

fun init: String s { ... }

end

object Program

fun run {

var t = Test clone;

var Test u;

// Ok !

u = t clone;

// compile-time error

u = t new: 100;

// compile-time error

u = t init: "Hi";

// ok

var any = "just a test";

u = Test new: any;

}

end

The last two lines of method run exemplify the use of dynamic dispatch with new: methods. Prototype
Test has two new: methods, one of them is user-defined and the other is created by the compiler from the
init: method. Message send “Test new: any” will cause a method search at runtime for an adequate
new: method. Method created from init: will be chosen. The important thing here is that the choice of
the method to be called is made at runtime. This is the regular Cyan mechanism for method dispatching,
which is not that nice when applied to new: constructors (it is slow). But it is probably worse to create
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a search mechanism specific to constructors.
To summarize, new and new: methods follow the rules:

(a) theirs return type should be the prototype in which they are declared;

(b) they should be public (this may change in the future);

(c) they should not be preceded by keyword override, abstract, or final;

(d) they should not be grammar methods (see Chapter 9);

(e) they should not be indexing methods;

(f) they can be called only by sending a message to the prototype.

Every prototype A have a private method called primitiveNew that creates a new copy of it, just
like the unary new:

private fun primitiveNew -> A

Unlike new, no initialization is made on the object. This method is added by the compiler and it cannot
be redefined by the user.

Since primitiveNew is private, it can only be called by a message send to self. This method can be
used, for example, to count how many objects were created:

public object University

@prototypeCallOnly

fun new -> University {

// an easy way of creating an University: in code

++universityCounter;

return primitiveNew

}

...

shared Int universityCounter = 0;

end

A prototype may declare a single method called initOnce without parameters or return value that
will be called once in the beginning of the program execution. Or maybe this method will be called when
the prototype is loaded into memory (this is yet to be defined). Method initOnce should be used to
initialize shared variables or even the instance variables of the prototype. This method should be private.
Therefore it cannot be called outside the object. It will rarely be called inside the prototype since it is
automatically called once.

public object Lexer

...

private fun initOnce {

keywordsTable add: "public";

keywordsTable add: "private";

keywordsTable add: "object";

...

}

shared Set<String> keywordsTable

end
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Metaobject @init automatically creates two methods: one that returns nothing and initializes in-
stance variables and a new method. Consider a prototype Proto that declares instance variables p1, p2,
..., pn of types T1, T2, ..., Tn. Then a metaobject call

@init(p1, p2, ..., pn)

can be put anywhere a slot declaration may appear inside the Proto declaration. When the compiler finds
this metaobject call, it will add the two following methods to the prototype, if they were not declared by
the user.

fun v1: (T1 p1) v2: (T2 p2) ... vn: (Tn pn) {

v1 = p1;

v2 = p2;

...

vn = pn;

}

If vi is a public or protected instance variable, vi = pi is replaced by vi: pi as expected.

@prototypeCallOnly

fun new: (T1 p1), (T2 p2), ... (Tn pn) -> Proto {

var Proto p = self primitiveNew;

// initialize variable vi with pi

...

return p;

}

So, a prototype

object University

@init(name, location)

public String name

public Int age

end

can be used as

var p = Person new;

p name: "Carol" age: 1;

var peter = Person new: "Peter", 3;

p age: 1 name: "Carol; // compile time error

One can use just @init, without parameters, to create to two methods above for all of the instance
variables of a prototype. The order of the variables in both method is the textually declared order in
the prototype. Of course, if a new instance variable is added to the prototype or the declaration order
is changed an error will be introduced in the code. The compiler should warn the user that the changes
made are dangerous. The information that the previous version of the prototype has a different order or
a different number of instance variables is available in the XML file which contains the source code.

There is an abbreviation for calling methods called new or new: of a prototype. Expressions

P new

P new: a

P new: a, b, c

can be replaced by
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P()

P(a)

P(a, b, c)

Using prototypes Test and Person we can write

var t1 = Test(0);

var Test t2 = Test("Hello");

var Person p = Person("Mary", 1);

var q = Person("Francisco", 5);

However, in this text we will usually employ method new or new: for object creation.
Using the short form for object creation, we can easily create a net of objects. In this example,

BinTree inherits from Tree (Section 4.11).

object Tree

end

object BinTree extends Tree

@init(left, value, right)

public Tree left, right

public Int value

end

object No extends Tree

@init(value)

public Int value

end

...

var tree = BinTree( No(-1), 0, BinTree(No(1), 2, No(3)) );

Cyan does not restrict the statements in an init or new method. That will soon change. An instance
variable of a prototype Proto whose type is not an union of the type Union<Nil, T> cannot hold the Nil
value. When an object of Proto is created, its initial value is given by method defaultValue of its type.
However, this is not a meaningful value. The variable should be initialized with a better value before
used. The compiler should demand that either the instance variable has type Union<Nil, T> or it is
initialized in all init and new methods of the prototype in which it is declared. That will be demanded
as soon as possible.

4.6 Order of Initialization

A prototype may have assignments of expressions to instance variables, shared variables, constants, and
methods. Besides that, the initOnce method is called once to initialize instance or shared variables and
expressions is compile-time metaobjects should be evaluated.

When a prototype is loaded into memory (or when it is created at the beginning of the program
execution), the runtime system does some initializations. These correspond to assignments to constants,
shared variables, and instance variables (it is legal to assign a value to each of them). For each assignment,
the right-hand side is evaluated and assigned to the left-hand side exactly in the order just given. Inside
each one of the group “constants”, “shared variables”, and so on, the assignments are made in textual
order. After these initializations, initOnce is called.
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object Test

public const Int one = 1

shared Int three = two + 1

Int five = four + 1

Int six = five + 1

Int seven

shared Int four = three + 1

Int eight

public const Int two = one + 1

private fun initOnce {

seven = 7;

eight = 8;

}

end

This example shows the order of initialization: it is the order given by the variable names. Then six is
initialized before two, for example.

Every time a new object of the prototype is created, with new, new:, or clone, the expressions
assigned to instance variables are evaluated and assigned again.

4.7 Keyword Methods and Selectors

The example below shows the declaration of a method. The method body is given between and .

fun withdraw: Int amount -> Boolean { // start of method body

(total - amount >= 0) ifTrue: {

total = total - amount;

return true

}

ifFalse: {

return false

}

} // end of method body

A function is a sequence of statements delimited by { and }. In the code above, there are three
functions: the method body, one after ifTrue:, and another after ifFalse:. Functions become full
closures at runtime and were inspired in Smalltalk blocks. However, the Cyan anonymous functions are
statically typed. The syntax for declaring the body of a method between and came from language
Omega. Based on this syntax we thought in considering methods as objects (to be seen later).

Command return returns the method value and, unlike Smalltalk, its use is demanded. The execution
of the function is ended by the return command. Note that the method itself is a function which has
inside other functions. It is legal to use nested functions. Symbol ^ returns the value of a function.
However, it does not necessarily cause the method in which the function is to finish its execution. See
page 181 for a more detailed explanation.

Method withdraw takes an argument amount of type Int and returns a boolean value (of type
Boolean). It uses an instance variable total and sends message

ifTrue: { .. } ifFalse: { ... }

to the boolean value total - amount >= 0. The message has two function arguments,
{ total = total - amount; return true }
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and
{ return false }

A message like this is called a keyword message and is similar to Smalltalk keyword messages. As another
example, an object Rectangle can be initialized by

Rectangle width: 100 height: 50

This object should have been defined as

object Rectangle

fun width: Int w height: Int h {

self.w = w;

self.h = h;

}

fun set: (Int x, Int y) { self.x = x; self.y = y; }

fun getX -> Int { ^ x }

fun getY -> Int { ^ y }

Int w, h // width and height

Int x, y // position of the lower-left corner

...

end

Each identifier followed by a “:” is called a selector. So width: and height: are the selectors of the
first method of Rectangle. Sometimes we will use “method with multiple selectors” instead of “keyword
method”.

The signature of a method is composed by its selectors, parameter types, and return value type.
Then the signature of method “width:height:” is

width: Int height: Int

The signature of getX is
Int getX

It is important to note that there should be no space before “:” in a selector. Then the following
code is illegal:

(i > 0) ifTrue : { r = 1 } ifFalse : { r = 0 }

And so are the declaration
fun width : Int w height : Int h {

To make the declaration of a keyword method clear, parenthesis can be used to delimit the parameters
that appear after a selector:

object Rectangle

fun width: (Int w) height: (Int h) {

self.w = w;

self.h = h;

}

fun set: (Int x, y) {

self.x = x; self.y = y;

}

...

end

Parameters are read-only. They cannot appear in the right-hand side of an assignment.
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4.8 On Names and Scope

Methods and instance variables of an object should have different names. A local variable declared in
a method should have a name different from all variables of that method. So, the declaration of the
following method is illegal.

fun doAnything: Int x, Int y {

var newY = -y; // equivalent to "var Int newY = -y;"

(x < 0) ifTrue: {

var Int newX = -x;

(y < 0) ifTrue: {

var Int newY = -y; // error: redeclaration of newY

rotate newX, newY;

}

}

}

However, instance variables and shared variables can have names equal to local variables (which includes
parameters):

fun setName: String name {

self.name = name

}

An object can declare methods “value” and “value:” as in the following example:

object Store

private Int _value = 0

public fun value -> Int { ^ _value }

public fun value: Int newValue {

self._value = newValue

}

end

object Program

fun run {

var s = Store clone;

var Int a;

a = In readInt;

s value: a;

Out println: (s value);

}

end

Usually we will not use get and set methods. Instead, we will use the names of the attributes as the
method names as in

var Fish fish = Fish new;

fish name: "Cardinal tetra";

fish lifespan: 3;

Out println: "name: ", (fish name), " lives up to: ", (fish lifespan);
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Fish could have been declared as

object Fish

String _name;

Int _lifespan;

fun name -> String { ^_name }

// parameter with the same name as instance variable

fun name: _name String { self._name = _name }

fun lifespan -> String { ^_lifespan }

fun lifespan: Int _lifespan { self._lifespan = _lifespan }

end

4.9 Operator []

It is possible to define operator [] for indexing:

object Table

fun [] at: Int index -> String {

return anArray[index]

}

fun [] at: Int index put: String value {

anArray[index] = value

}

Array<String> anArray

end

...

var t = Table new;

t[0] = "One";

t[1] = "Two";

// prints "One Two"

Out println: t[0], " ", t[1];

This operator can only be used with methods at: and at:put:. Each selector should have only one
parameter. The “at:” parameter should be between and , without parentheses. One or both methods
can be declared. But when both are declared, the type of selector at: should be the same. The allowed
signatures of these methods are:

U at: T

at: T put: W

U at: T put: W

Only one of the last two signatures may be used. Usually, U = W. But these types can be different from
each other.

4.10 Method Overloading

There may be methods with the same selectors but with different number of parameters and parameter
types (method overloading). For example, one can declare
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object MyPanel

fun draw: Square f { ... }

fun draw: Triangle f { ... }

fun draw: Circle f { ... }

fun draw: Shape f { ... }

String name

end

There are four draw methods that are considered different by the compiler. In a message send
MyPanel draw: fig

the runtime system searches for a draw method in prototype MyPanel in the textual order in which the
methods were declared. It first checks whether fig references an object which is a subtype of Square
(See Section 4.16 for a definition of subtype). If it is, this method is called. If it is not, the searches
continues in the second method,

draw: Triangle f

and so on. If an adequate method is not found in this prototype, the search would continue in the
super-prototype. In this case, that will never happens: the compiler will assure that a method will be
found at runtime. After all, the language is statically-typed.

Method overloading is also possible when there is more than one selector:

object FullIndexable

fun init: Int size { v = Array<String> new: size }

fun at: Int i -> String { ^v[i] }

fun at: CySymbol s -> String { ^v[ Int cast: s } }

fun at: String s -> String { ^v[ Int cast: s } }

fun at: Int i put: String value -> String {

^v[i] = value

}

fun at: CySymbol s put: String value -> String {

^v[ Int cast: s } = value

}

fun at: String s put: String value -> String {

^v[ Int cast: s } = value

}

Array<String> v

end

This object could be used as in

var f = FullIndexable new: 10;

f at: 0 put: "zero";

f at: #1 put: "one";

f at: "2" put: "two";

Out println: (f at: "0"); // prints "zero"

Out println: (f at: 1); // prints "one"

Out println: (f at: #2); // prints "two"

The name of a method is the concatenation of all of its selectors. So method
fun at: Int i put: String value -> String

79



has name “at:put:”. Methods of the same prototype with the same name should have the same return
value type. Therefore the compiler would sign an error in the code

object Point

fun dist: Int nx, Int ny -> Int { ... }

fun dist: Float nx, Float ny -> Float { // compilation error here

...

}

...

Int x, y

end

There are two more restrictions on the use of overloaded methods:

(a) all methods with the same name should appear in sequence. Then the only element allowed between
two declarations of methods with the same name is another method with this same name.

object FullIndexable

fun at: Int i -> String { ^v[i] }

// init should not be here !

fun init: Int size { v = Array<String> new: size }

// compilation error

fun at: CySymbol s -> String { ^v[ Int cast: s } }

...

end

(b) all overloaded methods should have the same qualifier (public, protected, or private).

4.11 Inheritance

A prototype may extends another one using the syntax:
object Student extends Person ... end

This is called inheritance. Student inherits all methods and variables defined in Person. Student is called
a sub-object or sub-prototype. Person is the super-object or super-prototype. Every instance variable
of the sub-object should have a name different from the names of the public methods of the super-object
(including the inherited ones) and different from the names of the methods and other instance variables
of the sub-object. Since the name of a non-unary method includes the “:”, there may be instance variable
iv and method iv:.

A method of the sub-object may use the same selectors as a method of the super-object (their names
may be equal). There is no restriction on the parameter types used in the sub-object method. However,
the return value type of the sub-object method should be a subtype of the return value type of the
super-object method. That is, Cyan supports co-variant return value type. This does not cause any
runtime type errors, which is justified using the following example.

var Super v = anObject;

var A x;

x = v selector: 0;

The compiler checks whether the return value of method selector: of Super (which may be inherited
from super-objects) is a subtype of the declared type of x, A. The code is only run if this is true. Then
at runtime v may refer to a sub-object of Super referenced by anObject. This sub-object may declare
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a selector: method whose return value type is C, a subtype of the return value type B of method
selector: of Super. That will not cause a runtime type error because subtyping is transitive: C is
subtype of B which is a subtype of A. Therefore, C is also a subtype of A. At runtime there will be an
assignment of an object of C to a variable of type A, which is type-correct.

A public or protected method of the sub-object that overrides a super-object method (same selectors)
should be declared with the word override following the qualifier (public or protected). See the
examples.

object Animal

fun eat: Food food { Out println: "eating food" }

end

object Cow extends Animal

public override fun eat: Grass food { Out println: "eating grass" }

end

object Person

fun print {

Out println: "name: ", name, " (", age, ")"

}

public String name

public Int age

end

object Student extends Person

public override fun print {

super print;

Out println: " School: ", school

}

public String school

end

If override precedes a method definition, all methods of the prototype with the same name (selectors)
should be preceded by override too. A method can only be overridden by a method with the same
visibility. That is, a public method can only override a public method.

There is a keyword called super used to call methods of the super-object. In the above example,
method print of Student calls method print of prototype Person and then proceeds to print its own
data.

Methods init, init:, new, new:, and initOnce are never inherited. However, init or init: methods
of a sub-object may call init or init: methods of the super-object using super:

object Person

fun init: String name , Int age {

self.name = name;

self.age = age;

}

fun print {

Out println: "name: ", name, " (", age, ")"

}

public String name
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public Int age

end

object Student extends Person

fun init: String name, Int age , String school {

super init: name, age;

self.school = school

}

override fun print {

super print;

Out println: " School: ", school

}

fun nonsense {

// compile-time error in this line

// new: cannot be called

var aPerson = super new: "noname", 0;

// ok, clone is inherited

var johnDoe = super clone;

}

public String school

end

Keyword override is not necessary in the declaration of method init: of Student because init: of
Person is not inherited. The compiler adds to prototype Person a method

Person new: String name, Int age

and to Student

Student new: String name, Int age, String school

Since methods clone and new are not inherited, there will be compile-time errors in method nonsense.
A prototype may be declared as “final”, which means that it cannot be inherited:

public final object String

...

end

There would be a compile-time error if some prototype inherits String. The prototypes Byte, Short,
Int, Long, Float, Double, Char, Boolean, and String are all final.

A public or protected method declared as “final” cannot be redefined in sub-prototypes:

public object Car

final fun name: String newName { _name = newName }

final String fun name { ^_name }

String _name

...

end

Final methods should be declared in non-final prototypes (why?). Final methods allow some optimiza-
tions. The message send of the code below is in fact a call to method name of Car since this method
cannot be overridden in sub-prototypes. Therefore this is a static call, much faster than a regular call.

var Car myCar;

...

s = myCar name;
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Public instance variables can be declared final. That means the get and set methods associated to this
variable are final.

The name of a method is the concatenation of its selectors, without considering its parameters and
return type. Either all methods with the same name are final or none of them are.

object Bag

final fun add: (String name) { ... }

fun add: (Int name) { ... } // error

...

end

This is because of polymorphism. In a message send
b add: obj

in which the type of b is Bag, any of the two methods may be called if the type of obj is Any. The
compiler would be unable to do any optimizations in this case.

The table below summarizes the allowed combination among keywords in a method declaration.
Keyword abstract will be seen in Section 4.14.

public protected private override abstract final
public Y Y S
protected Y Y Y
private
override Y Y Y Y
abstract Y Y Y
final Y Y

Table 4.1: Keyword combination in method declaration

4.12 Multi-Methods

The mechanism of method overloading of Cyan implements a restricted form of multi-methods. In most
languages, the receiver of a message determines the method to be called at runtime when the message is
sent. In CLOS [Sei12], all parameters of the message are taken into consideration (which includes what
would be the “receiver”). This is called multiple dispatch and the methods are called “multi-methods”.
Cyan implements a restricted version of multi-methods: the method to be called is chosen based on the
receiver and also on the runtime type of the parameters. To make the mechanism clearer, study the
example below. Assume that Grass, FishMeat, and Plant are prototypes that inherit from prototype
Food.

package main

...

private object Animal

fun eat: Food food { Out println: "eating food" }

end

private object Cow extends Animal

override fun eat: Grass food { Out println: "eating grass" }

83



end

private object Fish extends Animal

override fun eat: FishMeat food { Out println: "eating fish meat" }

override fun eat: Plant food { Out println: "eating plants" }

end

public object Program

fun run {

var Animal animal;

var Fool food;

animal = Cow;

animal eat: Grass; // prints "eating grass"

animal eat: Food; // prints "eating food"

// the next two message sends prints the same as above

// the static type of the parameter does not matter

food = Grass;

animal eat: food; // prints "eating grass"

food = Food;

animal eat: food; // prints "eating food"

animal = Fish;

animal eat: FishMeat; // prints "eating fish meat"

animal eat: Plant; // prints "eating plants"

animal eat: Food; // prints "eating food"

// the next two message sends prints the same as above

// the static type of the parameter does not matter

food = FishMeat;

animal eat: food; // prints "eating fish meat"

food = Plant;

animal eat: food; // prints "eating plants"

food = Food;

animal eat: food; // prints "eating food"

}

end

4.13 Nil and Any, the Super-prototype of Everybody

Nil is a prototype outside the type hierarchy. It is not supertype or subtype of any other prototype.
Therefore a variable whose type is Nil can only be assigned the value Nil. And Nil can only be assigned
to a variable whose type is Nil. But when using dynamic typing this rule should not be obeyed. As
shown in Section 6, Nil is also compatible with type Dyn. Any expression can be assigned to a variable
whose type is Dyn and an expression whose type is Dyn can be assigned to any variable. That is, Dyn is
supertype and subtype of anything, including Nil. See the example.

var Nil myEmptyness;

myEmptyness = Nil; // ok
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var String s;

s = myEmptyness; // compile-time error

s = Nil; // compile-time error

myEmptyness = s; // compile-time error

Dyn myDyn = Nil; // ok

The declaration of Nil is given below. This prototype defines some basic methods that are not really
necessary but were included to make Nil and Any have a common interface. Then there will never be an
error if a message println is sent to a Dyn expression.

package cyan.lang

object Nil

final fun prototypeName -> String = "Nil"

fun asString -> String = "Nil"

fun asString: (Int ident) -> String {

var String s = "";

1..ident foreach: { (: Char ch :)

s = s + " "

};

return s + "Nil"

}

fun print { Out println: "Nil" }

fun println { print; Out println: "\n" }

end

Prototypes that are declared without explicitly extending a super-prototype in fact extend an object
called Any. Therefore Any is the super-prototype of every other object but Nil. It defines some methods
common to all objects such as asString, which converts the object data to a format adequate to printing.
For example,

Rectangle width: 100 height: 50

Rectangle set 0, 0;

Out println: (Rectangle asString);

would print something like

Rectangle {

w: 100

h: 50

x: 0

y: 0

}

Method asString: Int n also converts its receiver to a String. However, it does that with an iden-
tation of n white spaces. The indentation is made with defaultIdentNumber white spaces. This is a
constant declared in Any.
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The methods declared in Any are given below. The method bodies are elided.

package cyan.lang

@prototypeCallOnly("cast:", "init", "init:", "new", "new:")

public object Any

final fun eq: (Nil|Any other) -> Boolean {

final fun neq: (Nil|Any other) -> Boolean { ^ ! (eq: other) }

fun cast: (Any other) -> Any { ^other }

fun prototype -> Any { ^self }

final fun prototypeName -> String {

final fun parent -> Any { @javacode<<<< return parent(); >>>> }

final fun isInterface -> Boolean {

@checkIsA

final fun isA: (Any proto) -> Boolean {

@checkThrow

final fun throw: (CyException e) {

fun hashCode -> Int {

@typedClearly

fun clone -> Any { ^self }

private fun primitiveNew -> Any { ^Any }

fun asString -> String { asString: 0 }

fun asString: (Int ident) -> String {

fun == (Nil|Any other) -> Boolean { @javacode<<< return this == _other >>> }

fun isCase: (Any other) -> Boolean { ^self == other }

fun === (Nil|Any other) -> Boolean { return self == other }

fun != (Nil|Any other) -> Boolean { @javacode<<< return this != _other >>> }

fun assert: (Boolean expr) {

fun print { Out println: (self asString) }

fun println { print; Out println: "\n" }

fun defaultValue -> Any { ^ Any }

@checkAttachMixin

fun attachMixin: (Any mixProto) { }

fun popMixin -> Boolean { }

fun featureList -> Array<NTuple<key, String, value, Any>> {

fun featureList: (String slotName) -> Array<NTuple<key, String, value, Any>> {

fun slotFeatureList -> Array<NTuple<slotName, String, key, String, value, Any>> {

fun annotList -> Array<Any> {

fun annotList: (String slotName) -> Array<Any> {

fun (selector: String (param: (Any)+)? )+ t -> Nil|Any { }

fun (invokeMethod: selector: String (param: (Any)+)? )+ t -> Nil|Any { }

@checkAddMethod

fun (addMethod:

(selector: String ( param: (Any)+ )?

)+

(returnType: Any)?

body: Any) t

fun doesNotUnderstand: (CySymbol methodName, Array<Any> args)
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@checkSwitch

fun (

(case: (Any)+ do: Function<Nil>)+

(else: Function<Nil>)?

) t

@checkGetMethod

final fun getMethod: String signature -> Any

@checkSetMethod

final fun setMethod: (String signature, Any method)

public const Int defaultIdentNumber = 4

end

Methods prototype and primitiveNew are added to the compiler to every prototype — the cannot
be user defined. The compiler adds method defaultValue to every prototype that does not define
this method. The same is true for the methods clone, new, new:, attachMixin:, and popMixin. If a
prototype has one of these methods defined by the user, the compiler checks whether it has the correct
method signature (parameter types and return value type). Of course, methods new and new: are only
added if the prototype defines the correspondent init and init: methods.

Note that some of the Any methods are final and therefore they cannot be user-defined. As an example,
prototypeName is final.

Method eq: returns true if self and the parameter reference the same object, false otherwise.
For every user-declared prototype P the compiler adds a method “P cast: Any” if the prototype does

not define this method itself. A metaobject attached to this method issues an error if the receiver of a
message cast: is not a prototype.

var A a;

var Proto p;

p = A cast: Person;

p = a cast: Person; // compile-time error

A prototype may redefine method cast: to take more appropriate actions:

object PolarPoint

@prototypeCallOnly

fun cast: Any other -> PolarPoint {

if other is a regular point {

convert other to a polar point p

return p

}

else {

// test whether other prototype is PolarPoint or

// a sub-prototype of PolarPoint. If it is,

// return other. Otherwise throw an exception

}

}

end

The cast: method of the basic types do the usual conversion between these types (the same conversion
Java does). The cast: method of a prototype P tests whether its parameter prototype inherits from P or
if it is P itself. In these cases, the parameter itself is returned. Otherwise an exception ExceptionCast

is thrown. User-defined method cast: should be public, non-abstract, non-final. It is not necessary to
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attach metaobject prototypeCallOnly since the one attached to method cast: of Any will assure that
message cast: can only be send to prototypes.

Method “prototype” returns the prototype that was used to create the object or the prototype itself
(if it is the receiver):

var Person p = Person clone;

var w = Worker new;

assert: Person prototype == Person &&

p prototype == Person &&

w prototype == Worker &&

w prototype != Person;

To every user-declared prototype P the compiler adds method

fun prototype -> P {

return P

}

This method cannot be user-defined. Note that the return type of this method is a sub-prototype of the
return type of the method of Any. This is legal: the return type of a method can be subtype of the type
of the method of the same name defined in the super-prototype. prototypeName returns the name of the
original prototype. It would be “Person” for prototype Person and “Hashtable<String, Int>” for an
instantiation of generic object Hashtable.

Method parent returns the parent prototype of the receiver. If the receiver is not a prototype, it
returns the parent of the receiver´s prototype:

var Person p = Person name: "fulano";

assert: (p parent == Person parent);

Method parent of an interface always return AnyInterface even if the interface inherits from several
other ones. Method parent of AnyInterface returns Any. Method parent of Any returns -1.

Method isInterface returns true if the receiver is an interface. It cannot be redefined.
Method isA: returns true if the prototype of self is the same as proto or a descendent of it.

Parameter proto should be a prototype, which is checked by a metaobject checkIsA. Assuming that
Circle inherits from Elipse that inherits from Any, we have

var Elipse e = Elipse;

var Circle c = Circle x: 100 y: 200 radius: 30;

assert: (c isA: Elipse && c isA: Circle);

assert: (c isA: Any && Circle isA: Any && Circle isA: Circle);

/* if uncommented the statement that follows would

cause a compile-time error */

assert: (c isA: e);

Method throw: throws the exception that is the parameter. See more on Chapter 12.
hashCode returns an integer that is the hash code of the receiver object (this needs to be better

defined).
clone returns a cloned copy of self. It is used shallow copy. Method asString returns a string with

the content of self. It can and should be override to give a more faithful representation of the object.
Method == returns the same as eq: by default. But it can and should be user-defined. In the basic
types, it returns true if the values are equal. Method != returns true if == returns false and vice-versa.
Method isCase: is the same as == in Any. This method is used in the “case:do: ...” method for
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comparing the value of the receiver of the message with each of the values of the “cases”. See more about
this in page 60.

Method assert: takes a boolean expression as parameter and throws exception ExceptionAssert if
expr is false. Method print prints information on the receives using methods print: and println: of
prototype Out. Method defaultValue returns the default value for the prototype — see page 67. It is a
special value for the basic types (for example, 0 for Int) and the prototype itself for all other prototypes.

Method attachMixin attaches a mixin object to the current object. For each user-defined prototype
P, the compiler adds a method

@checkAttachMixin

fun attachMixin: Any mixProto { ... }

If the prototype does not define itself this method. Metaobject checkAttachMixin checks whether
mixProto is a mixin object that can be attached to objects of P and its sub-prototypes. This method is
described in page 108. popMixin removes the last mixin object dynamically attached to the receiver. It
returns true if there was a mixin attached to the object and false otherwise. A prototype may have
attachMixin: and popMixin defined by the user or none of them. It is illegal a prototype to have just
one of these methods defined by the user.

Section 5.1 explains in detail the Any methods that deal with features and annotations. Here we just
comment briefly these methods.

Method featureList returns an array with all features of the prototype. Method

fun featureList: (String slotName) -> Array<NTuple<key, String, value, Any>>

returns the feature list of slot slotName, which may be the name of an instance variable, method, or
constant declared in the prototype. The method name includes the types of the parameters but not the
return value type. If the prototype is dynamically typed, type Any should be used for each parameter
without a type.

Annotations are a special case of features. An attachment
@annot( #root )

is the same as
@feature("annot", #root)

Method annotList returns a list of annotation objects attached to the prototype. Method

fun annotList: (String slotName) -> Array<Any>

returns the annotation list of slot slotName.
Method
fun (selector: String (param: (Any)+)? )+ -> Nil|Any

is a grammar method (described in Chapter 9) used to call a method by its name. For example, suppose
an object Map has a method

key: String value: Int

This method can be called using the grammar method selector: ... in the following way:

Map selector: "key:" param: "One"

selector: "value:" param: 1;

This grammar method checks whether the object has the method at runtime (of course!). Then this
example is equivalent to

Map ?key: "One" ?value: 1;
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Note that there may be one or more parts “selector: ...”. Selector “param:” is optional. At least one
parameter should follow selector “param:” if it is present. The value returned by this method is the
object returned by the called method, which may be Nil if the return type is Nil.

Conceptually, a message send to object obj causes the execution of method
fun (invokeMethod: selector: String (param: (Any)+)? )+ t -> Nil|Any

of obj. That means the regular search for methods is used when searching for this method (in the
prototype of obj, the super-prototype of the prototype, and so on).

Method invokeMethod: ... is then responsible for calling the method associated to the message.
For example, suppose Worker inherits from Person and both define a print method.

var Worker w;

w = company getOldestWorker;

w print;

In the last message send, first method invokeMethod: ... of Any is called (assume that this method is
not overridden in sub-prototypes). Then invokeMethod: ... of Any does a search for an appropriate
method starting in Worker. Since a print method is found there, it is called.

Then, conceptually, usually Cyan does two searches for each method call:

(a) one for finding an invokeMethod: ... method;

(b) the other, inside this method of Any, to find the appropriate method. It is this call that is made in
almost all object-oriented languages.

There are two occasions in which things happens a little different from described above:

(a) when invokeMethod: ... calls itself, as in

var any = Any;

any invokeMethod: selector: "invokeMethod:"

There is an infinity loop;

(b) when invokeMethod: ... is redefined in a prototype. In this case, the redefined method is respon-
sible for calling the appropriate method.

Of course, we used the name invokeMethod: ... because of Groovy.
Method

fun (addMethod:

(selector: String ( param: (Any)+ )?

)+

(returnType: Any)?

body: Any)

adds a method dynamically to an object. It is explained in page 204 of Section 10.11.
Method doesNotUnderstand: is called whenever a message is sent to the object and it does not have

an appropriate method for that message. The message name (as a symbol) and the arguments are passed
as arguments to doesNotUnderstand:. This method ends the program with an error message. The name
of a message is the concatenation of its selectors. The name of message

ht at: i put: obj with: #first

is “at:put:with:”.
Since Cyan is statically typed, regular message sends will never cause the runtime error “method not

found”. But that can occur with dynamic message sends such as
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s ?push: 10;

or
s selector: #push param: 10

The argument to method doesNotUnderstand: is an array that has an element for each selector of
the message. Each selector may have zero or more real parameters. If a selector has two or more real
parameters, these are packed in another array. Then if method format:print:to: does not exist in
object x, the call

x format: "%d%s%i" print: n, name, age to: output

will cause method doesNotUnderstand: to be called with parameter
#{ Any cast: "%d%s%i", #{Any cast:n, name, age}#, output }#

There is always a cast to Any in the first element of any array. This assures that the array is of type
Array<Any>.

Method case:do: ... implements the “switch” statement and is discussed elsewhere (Section 3.7).
Methods getMethod: and setMethod: get and set a method of an object. They are discussed in

Section ??.

@checkGetMethod

final fun getMethod: String signature -> Any

@checkSetMethod

final fun setMethod: (String signature, Any method)

There are several missing methods in Any related to reflective introspection. These reflective intro-
spection methods will be added to Any during the design of the Metaobject-Protocol for Cyan.

4.14 Abstract Prototypes

Abstract prototypes in Cyan are the counterpart of abstract classes of class-based object-oriented lan-
guages. It is a compile-time error to send a message to an abstract prototype, which includes messages
new and new:. Since these methods can only be called through a prototype, no objects will ever be
created from an abstract prototype. init and init: methods may be declared — they may be called
by sub-prototypes.

The syntax for declaring an abstract object is

public abstract object Shape

fun init: Int newColor { color: newColor }

public abstract fun draw

fun color -> Int { ^ shapeColor }

fun color: Int newColor { shapeColor = newColor }

Int shapeColor

end

An abstract method is declared by putting keyword “abstract” before “fun” and it can only be declared
in an abstract object, which may also have non-abstract methods and instance variables. A sub-prototype
of an abstract object may be declared abstract or not. However, if it does not define the inherited abstract
methods, it must be declared as abstract.

The name of a method is the concatenation of its selectors, without considering its parameters and
return type. Either all methods with the same name are abstract or none of them are.

abstract object Printable

abstract fun print: Int

91



fun print: String // error: should be abstract

end

Objects are concrete things. It seems weird to call a concrete thing “abstract”. However, this is not
worse than to call an abstract thing “abstract”. Classes are abstraction of objects and there are “abstract
classes”, an abstraction of an abstraction.

Since all prototypes are concrete things in Cyan, the compiler adds a body to every abstract method
to thrown an exception ExceptionCannotCallAbstractMethod:

fun draw {

throw: ExceptionCannotCallAbstractMethod("Shape::draw")

}

Note that
Shape draw

causes a compile-time error. And

var Shape s = Shape;

s draw;

causes a runtime error. The method draw added to the compiler is called. It is legal to assign an abstract
object to a variable. To prohibit that would say that not all “objects” are really objects in Cyan. We
could not pass Shape as parameter, for example. That would be bad.

Keyword “override” is optional when used with the “abstract” keyword:

public abstract object Shape

abstract fun draw

...

end

abstract object Polygon extends Shape

abstract fun draw

end

We could have used

override abstract fun draw

4.15 Interfaces

Cyan supports interfaces, a concept similar to Java interfaces. The declaration of an interface lists zero
or more method signatures as in

interface Printable

fun print

end

The public keyword is not necessary since all signatures are public. fun is not necessary but it is
demanded for sake of clarity (should it be eliminated too?).

An interface has two uses:

(a) it can be used as the type of variables, parameters, and return values;
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(b) a prototype can implement an interface. In this case, the prototype should implement the methods
described by the signature of the interface. A prototype can implement any number of interfaces.
Name collision in interface implementation is not a problem.

Interfaces are similar to the concept of the same name of Java.
As an example, one can write

interface Printable

fun printObj

end

object Person

public String name

public Int age

end

object Worker extends Person implements Printable

String company

fun printObj {

Out println: "name: " + name + " company: " company

}

... // elided

end

Here prototype Worker should implement method printObj. Otherwise the compiler would sign an error.
Interface Printable can be used as the type of a variable, parameter, and return value:

var Printable p;

p = Worker clone;

p print;

An interface may extend any number of interfaces:

interface ColorPrintable extends Printable, Savable

fun setColor: Int newColor

fun colorPrint

end

An interface is a prototype that may inherit from any number of other interfaces. Therefore Cyan
supports a limited form of multiple inheritance. An interface that does not explicitly inherits from any
other in fact inherits from prototype AnyInterface (which inherits from Any).

object AnyInterface

end

The method signatures declared in an interfaces are transformed into public methods. These methods
throw exception ExceptionCannotCallInterfaceMethod:

// interface ColorPrintable as a prototype

object ColorPrintable extends Printable, Savable

fun setColor: Int newColor {

throw: ExceptionCannotCallInterfaceMethod("ColorPrintable::setColor");

}

fun colorPrint {
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throw: ExceptionCannotCallInterfaceMethod("ColorPrintable::colorPrint");

}

end

Interfaces are then objects with full rights: they be assigned to variables, passed as parameters, and
receive messages.

Although interfaces are objects, the compiler puts some restrictions on their use and declaration.

(a) An interface can only extend another interface. It is illegal for an interface to extend a non-interface
prototype.

(b) Interfaces cannot declare any new, new:, init, or init: methods. No object will never be created
from them. But the interface itself may receive messages.

(c) A regular prototype cannot inherit from an interface.

(d) If the type of an expression is an interface I, then the compiler checks whether the messages sent to it
match those method signatures declared in the interface, super-interfaces, and Any (See Section 4.13).

Besides that, method isInterface inherited from Any returns true when the receiver is an interface.
The examples that follow should clarify these observations.

// ok

var Printable inter = Printable;

// ok, asString is inherited from Any

Out println: (inter asString);

// ok, Printable is a regular object

Out println: (Printable asString);

var Any any = Printable;

// ok

Out println: (any asString);

// it is ok to pass an interface as parameter

assert: (any isA: Printable);

assert: (any isInterface && Printable isInterface &&

inter isInterface);

A note on implementation: for each interface Inter the compiler creates a regular prototype called
Proto_Inter. Inter will produce a Java interface called _Inter and Proto_Inter will produce a Java
class called _Proto_Inter. Whenever Inter is used as a type in the Cyan code, it will be replaced by
_Inter in the Java code. But if it is used in an expression, the Java code uses Proto_Inter. Or better,
it uses _Proto_Inter.prototype, which is the expression that refers to an object of _Proto_Inter.

Class _Proto_Inter implements _Inter. All methods defined in Inter have bodies that throw ex-
ception

ExceptionCannotCallInterfaceMethod

As an example, the code

var Shape sh; // Shape is an interface

sh = Shape;

will produce the following Java code:

_Shape _sh;

_sh = Proto_Shape.prototype;
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4.16 Types and Subtypes

A type is a prototype (when used as the type of a variable or return value) or an interface. Subtypes
are defined inductively. S is subtype of T if:

(a) S extends T (in this case S and T are both prototypes or both interfaces);

(b) S implements T (in this case S is a prototype and T is an interface);

(c) S is a subtype of a type U and U is a subtype of T.

Then, in the fake example below, I is supertype of every other type, J is supertype of I, J and D are
supertypes of E, and B is supertype of C, D, and E.

interface I end

interface J extends I end

object A implements I end

object B extends A end

object C extends B end

object D extends C implements J end

object E extends D end

Considering that the static type or compile-time type of s is S and the static type of t is T, the
assignment “t = s” is legal if S is a subtype of T. Using the previous example, the following declarations
and assignments are legal:

var I i;

var J j;

var A a;

var B b;

car D d;

var E e;

i = j; i = a; a = e; i = a;

j = d; b = d; j = e;

There is a predefined function typeof evaluated at compile-time that return the type of an variable,
constant, or literal object. In the example

var Int x;

var typeof(x) y;

x and y have both the Int type.

4.17 Union Types

Cyan has a special generic prototype Union that takes at least two real parameters that should be
prototypes (including Nil). An object of Union is a container for values of any of the real parameters.
In an assignment in which the type of the left-hand side is

Union<T1, T2, ..., Tn>

and the type of the right-hand side is Ti for some i between 1 and n, the compiler generates code to
create an object of the union and initializes it with the right-hand side expression. More specifically, if W
is the type of the right-hand side expression, the generated code tests which Ti is a supertype of W from
1 to n (in this order). Then it calls a method of the union object with the right-hand side expression
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keeping which Ti was found. At compile-time it is checked whether W can be a subtype of any of the
types T1, T2, ..., Tn. The type found at compile-time need not to be related to the runtime type found.

Shape is a super-prototype of Circle.

var Union<Circle, Shape> join;

var Shape s = Circle(10, 5, 3);

join = s;

For the last assignment the compiler generates the equivalent to:

join = Union<Circle, Shape> new;

if s isA: Circle {

join f1: s

}

else {

join f2: s

}

f1 and f2 are private methods of the Union. They are only accessible to the compiler. Since the compiler
checks whether the right-hand side expression, which is s, is subtype of Circle or Shape, it is not
necessary to test whether s is an object of Shape in the else part of the if.

The union object keeps which method was used to initialize it. This information is used to retrieve
the object stored in the union, which is made with the unionCase:do: method.

var Union<Circle, Shape> join;

var Shape s = Circle(10, 5, 3);

join = s;

join

unionCase: Circle do: {

("join is a Circle with radius " + (join radius) ) println

}

unionCase: Shape do: {

"join is a Shape" println

}

Inside the function passed as parameter to do: the type of join is the type passed as parameter to
the previous unionCase:. Then in the first function the type of join is Circle and we can call method
radius. This feature is implemented through a metaobject checkUnionCase and was taken from language
Ceylon.

Of course, the assignment “s = join” produces a compile-time error because it is unsafe. There is
no guarantee that join keeps an object of the type of s, which is Shape.

The unionCase:do: method takes parameters in the order they appear in the prototype Union. If
the order is not respected they will be a compiling error. The compiler will not find the method.

It is illegal to declare an Union with two equal prototypes as Union<Shape, Shape>. But there is no
restriction other than that. In particular, it is legal to declare a supertype before a subtype. However, in
this case the subtype will never be used. When an assignment is made to a variable whose type is Union,
the first type that fit is used (from left to right), not the best match.

var Union<Shape, Circle> join;

var Shape s = Circle(10, 5, 3);

// s is inserted as Shape, the first type that fit

join = s;
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join // this union case is used

unionCase: Shape do: {

"join is a Shape" println

}

unionCase: Circle do: {

("join is a Circle with radius " + (join radius) ) println

}

It is expected that the compiler issue a warning if a sub-prototype appears after its super-prototype in a
generic prototype instantiation of Union.

An assignment in which the type of the left-hand side is Dyn and the right-hand side is Union<T1, ..., Tn>

is transformed by the compiler into an assignment from the contents of the right-hand side to the left-hand
side.

var Dyn d;

var Union<T1, T2, ..., Tn> myUnion;

d = myUnion;

The last assignment is transformed by the compiler into
d = myUnion getElem;

getElem is a private method that returns the object kept by the union.
In all places but in expressions an union Union<T1, T2, ...,Tn> may be replaced by
T1|T2|...|Tn

For example:

object Test

fun print: Int | Char | String elem { ... }

fun test {

var Worker | Person p;

...

}

Manager | Director upperClass;

end

However, this syntax cannot be used in expressions because that would mean a message send with selector
“|” to a prototype.

(Int | Char prototypeName) println;

Int | Char is the sending of message “|” to prototype Int with parameter Char. Prototype Int do have
a method “|” but this takes another Int as parameter. There is a compile-time error. It is expected that
that compiler detects that the programmer wanted to use Union<Int, Char>. It should offer to correct
the error resulting in

(Union<Int, Char> prototypeName) println;

Method eq: declared in Any compares the receiver to the argument, returning true if they refer to
the same object. When the receiver is an union, the comparison is made between the contained object
with the argument.

var Person p = Person;

var Union<Person, Any> myUnion;

myUnion = p;
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assert: (myUnion eq: p); // true

p = Person();

// neq: is not eq:

assert: (myUnion neq: p); // true

var Int i = 0;

var Union<Int, Char> intChar;

intChar = 0;

assert: (i eq: intChar); // true

The first assertion is true because myUnion keeps the object referenced by p. The comparison
myUnion eq: p

is made between the object that myUnion contains and p. Since they are the same, the result is true. In
the second assertion, a comparison is made between a reference to Person (contained by myUnion) and
a reference to a newly created object (created by expression Person()).

Method eq: of the basic types (such as Int) compare for equal values, being equivalent to ==.
Therefore the last assertion is true.

Method == of the Union prototypes compare the contained object with the argument.

var String s = "Carol";

var Union<String, Any> myUnion;

myUnion = "Carol";

assert: (myUnion == s); // true

s = "Car" + "ol";

assert: (myUnion == s); // true

assert: (myUnion != "Carolina"); // true

var Union<Int, Char> intChar;

intChar = 0;

assert: (0 == intChar); // true

4.17.1 The Union Prototypes

If neither A or B is Nil and both are prototypes, prototype Union<A, B> is

package cyan.lang

final object Union<A, B>

fun == (Any other) -> Boolean {

return elem == other;

}

@checkUnionCase

fun unionCase: A do: Function<Nil> Afunction

unionCase: B do: Function<Nil> Bfunction {

if which == #f1 {

Afunction eval

}

else { // should be #f2

Bfunction eval
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}

}

private fun f1: (A other) { which = #f1; elem = other }

private fun f2: (B other) { which = #f2; elem = other }

// private methods go here

// the contained element

Any elem

// which element is kept by "elem"

CySymbol which

@javacode<*<

@Override public boolean eq(Object other) {

_Any another = (_Any ) getUnionElem();

if ( another == null )

return false;

else

return another._eq_dot(other);

}

@Override Object getUnionElem() { return _elem; }

>*>

end

Method eq: is declared in Any and handles appropriately the union prototypes.
When one of the real parameters to the union is Nil, this prototype like this:

package cyan.lang

final object Union<Nil, B>

@checkIfNil

fun ifNil: (Any other) -> Any {

if which == #f1 {

return other

}

else {

return elem

}

}

fun == (Nil|Any other) -> Boolean {

@javacode<*<

if ( _which.s.equals("f1") ) {

return _other == _Nil.prototype;

}

else {

_Any another = (_Any ) getUnionElem();

if ( another == null )

return false;

else
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return another._equal_equal(other);

}

>*>

// this method is not implemented in Cyan

}

@checkUnionCase

fun unionCase: Nil do: (Function<Nil> Afunction)

unionCase: B do: (Function<Nil> Bfunction) {

if which == #f1 {

Afunction eval

}

else { // should be #f2

Bfunction eval

}

}

private fun f1: { which = #f1; }

private fun f2: (B other) { which = #f2; elem = other }

// private methods go here

// the contained element

Any elem

// which element is kept by "elem"

CySymbol which

@javacode<*<

@Override public boolean eq(Object other) {

if ( _which.s.equals("f1") ) {

return _other == _Nil.prototype;

}

else {

_Any another = (_Any ) getUnionElem();

if ( another == null )

return false;

else

return another._eq_dot(other);

}

}

@Override Object getUnionElem() { return _elem; }

>*>

end

There is an automatic convertion from an A expression to Union<A, B> in assignments of the kind
Union<A, B> = A

However this does not mean that Union<A, B> is a supertype of A or B. Without the extra code added
by the compiler this assignment would not be type-correct. The union prototype does not have the
common methods of A and B.

Since methods eq:, neq:, ==, and === use the contained element of the union, an union behaves much
like the contained element. This makes it easy to optimize unions. Objects of the unions need not to
be created unless necessary. And they are only necessary when messages other than unionCase:do: are
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sent to the union object. This will be rare. Most of the time the compiler can use the type Any as the
type of the union. Only when necessary an object of the union can be created.

var Person|String ps;

ps = "Carol"; // may use Any as the type of s

var String s;

// create a Union<Person, String> object here

(ps prototypeName) println;

Method isA: of all union prototypes return true if the receiver is a prototype of the union or any of
the real parameters to the union. Then if myUnion is a variable of type

Union<T1, T2, ..., Tn>

all method calls bellow return true.

myUnion isA: Union<T1, T2, ..., Tn>

myUnion isA: T1

myUnion isA: T2

...

myUnion isA: Tn

The union prototypes can take a lower-case parameter before each prototype parameter. A prototype
Union<first, A, second, B>

causes the creation of the following prototype

package cyan.lang

final object Union<first, A, second, B>

@checkUnionCase

fun first: Function<Nil> Afunction

second: Function<Nil> Bfunction {

if which == #f1 {

Afunction eval

}

else { // should be #f2

Bfunction eval

}

}

fun first: ( A elem ) {

which = #f1;

self.elem = elem

}

fun second: ( B elem ) {

which = #f2;

self.elem = elem

}

// other methods as before

// except that unionCase:do: is not used

end
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Nil cannot be used as a prototype parameter. This kind of union can have repeated prototype parameters.
Then

Union<wattsHour, Float, calorie, Float, joule, Float>

is legal. Because of that, there is no unionCase:do: method in this type of union prototype. And there
is not automatic convertions in assignments. Methods with the names of the lower-case parameters to
the generic prototype should be used to initialize the union object. This union object should be created
before used, unlike the previous union objects that were automatically created.

// create the union object

var myUnion = Union<number, Int, numberStr, String> new;

myUnion = "12"; // compile-time error

myUnion number: 12; // ok

myUnion numberStr: "12"; // ok

// compiling error: no unionCase:do: method

myUnion

unionCase: Int do: { ... }

unionCase: String do: { ... };

myUnion

number: {

// myUnion is Int here

(1 + 2*myUnion) println

}

numberStr: {

// myUnion has type String here

// string concatenation

("number is " + myUnion) println

};

Let us see another example of this kind of union prototype.

var enery = Union<wattHour, Float, calorie, Float, joule, Float> new;

energy wattsHour: 314.15;

energy

wattsHour: {

"I had watt-hours" println

}

calorie: {

"I had calories" println

}

joule: {

"I had joules" println

};

4.17.2 Operators that Use Unions

The language supports the Elvis operator, Nil-safe message sends, and Nil-safe array access. The Elvis
operator is implemented as a method ifNil: (see page 99), Nil-safe message sends have all selectors
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prefixed with ?., and Nil-safe array access is made with ?[ and ]?. See the examples.

var String userName;

// getUserName is a method name

var Nil|String gotUserName = UserDataBase getUserName;

userName = gotUserName ifNil: "anonymous";

The last line is the same as
userName = String cast: ((gotUserName == Nil) f: gotUserName t: "anonymous");

This is not exactly the Elvis operator of language Groovy. In Cyan both the receiver of message ifNil:

and its parameters are evaluated.
Nil-safe message send:

var Nil|IndexedList<String> v;

// it may associate Nil to v

v = obj getPeopleList;

v ?.at: 0 ?.put: "Gauss";

The last line is the same as

if v != Nil {

v at: 0 put: "Gauss";

}

There should not be any space between the ?. and the selector. And all selectors of a message should
be preceded by ?. in a Nil-safe message send.

Nil-safe array access:

var Nil|Array<Person> clubMembers;

...

var firstMember = clubMembers?[0]?;

The last line is the same as
var firstMember = Person cast: ((clubMembers != Nil) t: clubMembers[0] f: nil);

The result of clubMembers?[0]? when clubMembers is Nil is Nil too.
A code

if clubMembers != Nil {

clubMembers[0] = "Newton"

}

is equivalent to

clubMembers?[0]? = "Newton";

We can use all features at the same time:

var Nil|Array<Nil|Person> clubMembers;

...

var String firstMemberName = (clubMembers?[0]? ?.name) ifNil: "no member";

4.18 Mixin Inheritance

An object can inherit from a single object but it can be mixed with any number of other objects through
the keyword mixin. This is called mixin inheritance and it does not have the problems associated to
multiple inheritance.
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object B extends A mixin M1, M2, ... Mn

// method and variable declaratins go here

end

M1, M2, ... Mn are mixin objects. A mixin object M is declared as

mixin(S) object M extends N

// method and variable declarations of the mixin

end

Mixin M extends mixin N. This inheritance is optional, of course. Mixin N should be declared as

mixin(R) object N extends P

// method and variable declarations of the mixin

end

Here R should be a subtype of S. The difference of a mixin from a normal object declaration is that a
mixin object does not extends Any, the root of the object hierarchy, even if it does not extends explicitly
any other object.

Mixin M may be inherited by prototype S, specified using “mixin(S)”, or by sub-prototypes of S, or to
prototypes implementing interface S. Methods of the mixin object M may call methods of S using super.

Object or interface S may not appear in the declaration of a mixin object.

mixin object PrintMe

fun whoIam {

Out printn: "I am #{super prototypeName}"

}

end

In this case the mixin methods may call, through self or super, methods of prototype Any.

mixin object Empty

end

Since mixin Empty does not inherit from any other mixin, it does not have any methods or instance
variables. This mixin could have been declared as

mixin(Any) object Empty

end

Currently a mixin object cannot be the type of a variable, parameter, or return value. Maybe this
restriction will be lifted in the future. If M defines a method already defined in object S (assuming that S
is not an interface), then the method declaration should be preceded by override, as is demanded when
a sub-object override a super-object method.

The compiler creates some internal classes when it encounters an object that inherits from one or
more mixin objects. Suppose object B extends object A and inherits from mixin objects M1, M2, ... Mn

(as in one of the previous examples). The compiler creates an object B’ with the body of B. B’ defines a
method with an empty body for each method declared in the mixin objects M1, ..., Mn. Then the compiler
makes B’ inherit from A. After this, it creates prototypes M1’, M2’, ... Mn’ in such a way that

(a) each Mi has the same body as Mi’;

(b) M1’ inherits from B’ and M(i+1) inherits from Mi;

(c) Mn’ is renamed to B.
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Note that:

(a) there is never a collision between methods of several mixins inherited from an object;

(b) the object that inherits from one or several mixins is placed above them in the hierarchy — the
opposite of inheritance.

A prototype may call methods of its mixins:

mixin(Person) object Comparison

fun older: Person other {

^return super age > other age

}

end

object Person mixin Comparison

...

fun compare: Person other {

// calling method older: of mixin Comparison

if older: other {

Out println: "#{other name} is older than #{name}"

}

}

public Int age

public String name

end

It is legal to send message other: to self since the compiler adds a method

fun older: Person other { }

to protototype Person. In Person objects, the method called by “older: other” will be older: of
Comparison.

A mixin object may declare instance variables. However a mixin object that declares instance variables
cannot be inherited twice in a prototype declaration:

mixin object WithName

fun print { ... }

public String name

end

mixin object WithNameColor extends WithName

fun print { ... }

public Int color

end

mixin object WithNameFont extends WithName

fun print { ... }

public String font

end

mixin object PersonName mixin WithNameFont, WithNameColor
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fun print {

Out println: "Person: ";

super print

}

end

Here WithName is inherited by PersonName by two different paths:
WithName => WithNameColor => PersonName

WithName => WithNameFont => PersonName

Hence objects of PersonName should have two instances of instance variable name. Each one should be
accessed by one of the inheritance paths. Confusing and that is the reason this is not allowed. This is
the same problem of diamond inheritance in languages that support multiple inheritance.

As said above, Cyan does not allow a mixin object that declares instance variables to be inherited by
two different paths. Then the introduction of an instance variable to a mixin object may break a working
code. In the above example, the introduction of name to WithName after the whole hierarchy was built
would cause a compile-time error in prototype PersonName. That is bad. The alternative would be to
prohibit instance variables in mixin objects. We believe that would be much worse than to prohibit the
double inheritance of a mixin object that declares instance variables.

Let us show an example of use of mixin objects.

mixin(Window) object Border

fun draw { /* draw the window */

drawBorder;

super.draw

}

fun drawBorder {

// draw a border of color "color"

...

}

fun setBorderColor: Int color { self.color = color }

Int color;

...

end

object Window mixin Border

fun draw { /* method body */ }

...

end

Object Window can inherit from mixin Border because the mixin object is declared as mixin(Window)

and therefore Window and its sub-objects can inherit from it. Methods of Window can be called inside
mixin Border using super.

The compiler creates the following hierarchy:

Any

Window’ (with the body of Window)

Window (with the body of Border)

See Figure 1.3. When message draw if sent to Window, method draw of the mixin Border is called. This
method calls method drawBorder of the mixin to draw a border (in fact, the message is sent to self and
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in this particular example method drawBorder of Border is called). After that, method draw of super
is called. In this case, super refer to object Window’ which has the body of the original Window object.
Then a window is drawn.

As another example, suppose we would like to add methods foreach to objects that implement
interface Indexable:

interface Indexable<T>

// get element "index" of the collection

fun get: Int index -> T

// set element "index" of the collection to "value"

fun set: (Int index) value: (T aValue)

// size of the collection

fun size -> Int

end

The mixin object defined below allows that:

mixin(Indexable<T>) object Foreach<T>

fun foreach: Function<T, Nil> b {

var i = 0;

{^ i < size } whileTrue: {

b eval: (get i)

}

}

end

Note that there may be generic mixin objects (see more on generic objects in Chapter 7). The syntax is
not the ideal and may be modified at due time.

Suppose object PersonList implements interface Indexable<Person>:

object PersonList implements Indexable<Person> mixin Foreach<Person>

fun get: Int index -> Person { ... }

fun set: (Int index) value: (Person person) { ... }

fun size -> Int { ... }

// other methods

end

Now method foreach inherited from Foreach can be used with PersonList objects:

PersonList foreach: { (: Person elem :) Out println: elem }

Method foreach: sends messages size and get to self, which is PersonList in this message send.
Then the methods size and get called will be those of PersonList. self can be replaced by super in
this case. Be it self or super, the compiler does not issue an error message because methods size and
get are defined in Indexable<Person>, the prototype that appears in the declaration of Foreach<T>.

Another example would be to add a method select that selects, from a collection, all the elements
that satisfy a given condition.

interface ForeachInterface<T>

fun foreach: Function<T, Nil>

end

mixin(ForeachInterface<T>) object SelectMixin<T>
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fun select: (Function<T, Boolean> condition) -> Collection<T> {

var c = Collection<T> new;

foreach: { (: T elem :)

if condition eval: elem {

c add: elem

}

};

return c

}

end

object List<T> mixin SelectMixin<T>

...

end

...

var list = List<Person> new;

list add: peter, john, anne, livia, carolina;

var babyList = list select: { (: Person p :) ^ (p age) < 3 };

Here babyList would have all people that are less than three years old. Note that object Collection in
mixin object SelectMixin could have been a parameter to the mixin:

mixin(ForeachInterface<T>) object SelectMixin<T, CollectTo>

fun select: (Function<T, Boolean> condition) -> CollectTo<T> {

var c = CollectTo<T> new;

foreach: { (: T elem :)

if condition eval: elem {

c add: elem

}

};

return c

}

end

The same idea can be used to create a mixin that iterates over a collection and applies a function to
all elements, collecting the result into a list.

4.19 Runtime Metaobjects or Dynamic Mixins

Mixin prototypes can also be dynamically attached to objects. Returning to the Window-Border example,
assume Window does not inherit from Border. This mixin can by attached to Window at runtime by the
statement:

Window attachMixin: Border;

Effectively, this makes Border a metaobject with almost the same semantics as shells of the Green
language [dOGab]. Any messages sent to Window will now be searched first in Border and then in
Window. When Window is cloned or a new object is created from it using new, a new Border object is
created too.
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As another example, suppose you want to redirect the print method of object Person so it would call
the original method and also prints the data to a printer. This can be made with the following mixin:

mixin(Any) object PrintToPrinter

override fun print {

super print;

// print to a printer

Printer print: (self asString)

}

end

“self asString” returns the attached object as a string, which is printed in the printer by method
print:. This mixin can be added to any object adding a print method to it:

object Person

public String name

public Int age

override fun asString -> String {

^"name: #name age: #age"

}

end

...

var p = Person new;

p name: "Carol";

p age: 1;

p attachMixin: PrintToPrinter;

// prints both in the standart output and in the printer

p print;

Person name: "fulano";

Person age: 127;

// print only in the standard output

Person print;

Note that attachMixin is a special method of prototype Any: it is added by the compiler and it can
only be called by sending messages to the prototype. These dynamic mixins are runtime metaobjects.
Probably they can only be efficiently implemented by changing the Java Virtual Machine (but I am not
so sure). Maybe efficient implementation is possible if the metaobjects (dynamic mixins) that can be
attached to an object are clearly identified:

object(PrintToPrinter) Person

public String name

public Int age

override fun asString -> String {

^"name: #name age: #age"

}

end

Then only PrintToPrinter metaobjects can be dynamically attached to Person objects.
The last dynamic mixin attached to an object is removed by method popMixin defined in prototype

Any. It returns true if there was a mixin attached to the object and false otherwise. Therefore we can
remove all dynamic mixin of an object obj using the code below.
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while obj popMixin {

}

The above definition of runtime mixin objects is similar to the definition of runtime metaobjects of
Green [dOGab]. The semantics of both are almost equal, except that Green metaobjects may declare a
interceptAll method that is not supported by mixin objects (yet).
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Chapter 5

Metaobjects

Observation: this chapter will be completely rewritten soon. Await to read it.
A metaobject is an object that can change the behavior of a program, add information to it, or it can

just inspect the source code, using the collected information in the source code itself. Metaobjects may
appear in several places in a Cyan program. A metaobject is attached to a prototype, method, interface,
and so on using @ as in

@checkStyle object Person

fun print {

Out println: "name: ", name, " (", age, ")"

}

public String name

public Int age

end

checkStyle is a metaobject written in Java. The compiler loads a Java class checkStyle from the disk
and creates an object from it. Then it calls some methods of this object passing some information on the
object Person as parameter. For example, it could call method change of the checkStyle object passing
the whole abstract syntax tree (AST) of Person as parameter. Then method change of checkStyle

could change the AST or issue errors or warnings based on it. The intended meaning of checkStyle is
to check whether the identifiers of the prototype follow Cyan conventions: method names and variables
should start with an lower case letter and prototype and interfaces names should start with an upper
case letter. In this metaobject, the AST is not changed at all.

The interactions of metaobjects with the Cyan compiler will be defined by a Meta-Object Protocol
(MOP). The MOP will define how and which parts of the compiler are available to the metaobjects,
which can be written by common users. Only a small part of the MOP has been designed, which is
described in the next paragraphs.

Each metaobject is associated to a Java class that should inherit from class CyanMetaobject of the
compiler. The metaobject should be part of the package “meta” of the compiler. This restrictions will
be lifted as soon as possible and metaobjects will be implemented as a Java class that does not belong to
a package. Reflection will be used to call the metaobject methods and the metaobject will also use this
technique to call the compiler methods.

All Java classes for metaobjects of a package should be in a directory “meta” of this package. When
a package is imported, so are its metaobjects.

Class CyanMetaobject defines the following methods:

1. String getName() that returns the name of the metaobject. For example, metaobject feature
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is defined in class CyanMetaobjectFeature and method getName() of this class always returns
"feature";

2. boolean attachedToSomething() that returns true if the metaobject is attached to an instance
variable, variable, method, statement, or prototype. This means the metaobject call know what
is the next declaration (variable, method, prototype) or statement. It is expected that is modifies
something based on that, which is the usual case. Metaobject javacode is described by the Java
class CyanMetaobjectJavaCode that defines a method attachedToSomething that returns false.
Then a call to javacode is not attached to anything.

5.1 Pre-defined Metaobjects

There is a set of metaobjects that are automatically available in every Cyan source code: prototypeCallOnly,
javacode, annot, feature, text, dynOnce, dynAlways (page 131), doc, clearlyTyped, subprototypeList,
and init (see page 73).

Metaobject prototypeCallOnly should be followed by a public method declaration. It checks whether
the method is only called through the prototype. A call to the method using a variable is forbidden:

object Person

public String name

@prototypeCallOnly fun create -> Person { ^ Person new }

end

...

var Person p;

p = Person create; // ok

p = p create; // compile-time error

All new methods are implicitly declared by the compiler with a metaobject prototypeCallOnly. Even
if the user declares a new method the compiler attaches to it this metaobject.

The pre-defined metaobject annot attaches to an instance variable, shared variable, method, constant,
prototype, or interface a feature given by its parameter, which may be any object. This feature can be
retrieved at runtime by method

fun annotList -> Array<Any>

inherited by any object from Any.
As an example of its use, consider an annotation of object Person:

@annot( #Author ) object Person

fun print {

Out println: "name: ", name, " (", age, ")"

}

@annot( #Authorname )

public String name

public Int age

end

There could exist a prototype XML to create XML files. Method write: of XML takes an object writeThis
as parameter and writes it to a file filename as XML code using the annotations as XML tags:

write: (Any writeThis) tofilename: (String filename)

The annotated instance and shared variables are written in the XML file. The root element is the
annotation of the prototype. Therefore the code
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Person name: "Carol";

Person age: 1;

XML write: Person tofile: "Person.xml";

produces a file "Person.xml" with the contents:

<?xml version="1.0"?>

<Author>

<Authorname>

Carol

</Authorname>

</Author>

To see one more example of use of annotations, see page 147 of Chapter 8 on tuples and unions. text
is another pre-defined metaobject. It allows one to put any text between the two sets of symbols. This
text is passed by the compiler to a method of this metaobject which returns to the compiler an object of
the AST representing an array of characters. So we can use it as in

var Array<Char> xmlCode;

xmlCode = @text<**

<?xml version="1.0"?>

<Author>

<Authorname>

Carol

</Authorname>

</Author>

**>

xmlCode has the text of the XML code as an array of Char´s.
Metaobject strtext works exactly as text but it produces a String. In either one, #{expr} is

replaced by the value of expr at runtime:

Person name: "Peter" salary: 10000.0;

var String text;

text = @strtext(+

The name is #{Person name} and the salary is #{Person salary}

+);

// prints "The name is Peter and the salary is 10000.00"

Out println: text;

Every prototype has a list of features. A feature is simple a key-value pair in which the key is a string
and value can be any object. Different objects of a prototype share the feature list.

At compile-time, a feature is associated to a prototype by the pre-defined metaobject feature:

@feature("compiler", #nowarning) @feature<* "author", "José" *>

object Test extends Any

fun run {

featureList foreach: { (: NTuple<key, String, value, Any> elem :)

Out println: "key is #{elem key}, value is #{elem value}"

}

}

end

113



features are used to associate information to prototypes (including interfaces), instance variables, methods
and constants. This information can be used by tools to do whatever is necessary. The example given in
page 112 uses annotations (a kind of features) to produce a XML file from a tree of objects. Annotations
are used in grammar methods to automatically produce an AST from a grammar message send.

The parameters to metaobject feature should be literal strings or Cyan symbols. features can be
used to set compiler options. In the example above, the compiler is instructed to give no warnings in the
compilation of Test. Maybe it would warn that Any is already automatically inherited.

Method featureList is inherited from Any by any prototype. It returns an array with all features
of the prototype. This array has type

Array<NTuple<key, String, value, Any>>

That is, the elements are tuples with fields key and value. In the above example, method run scans the
array returned by featureList and prints information on each feature. Since elem has type

NTuple<key, String, value, Any>

elem has methods key and value for retrieving the fields of the tuple. Method run will print

key is compiler, value is nowarning

key is author, value is José

Possibly the compiler will add some features to each prototype such as the compiler name, version,
compiler options, date, author of the code, and so on.

Annotations are a special case of features. A call
@annot( #first )

is the same as
@feature("annot", #first)

Method annotList is inherited from Any by any prototype. It returns a list of annotation objects
attached to the prototype.

@annot( #first ) @annot("second") object Test

fun run {

annotList foreach: { (: String annot :)

Out print: annot + " "

}

}

end

When run is called, it prints
first second

Since methods are objects (see Section 10.8), one can discover the annotations of methods too:

object Test

@annot( #f1 ) @annot( #firstMethod ) fun test { }

fun run {

// Test getMethod: "test" is the method test of Test

( (Test getMethod: "test") annotList) foreach: {

(: String annot :)

Out print: annot + " "

}

}

end
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doc is a pre-defined metaobject used to document any kind of identifier such as prototypes, constants,
interfaces, and methods.

@doc<<

This is a syntactic analyzer.

It should be called as

Parser parse: "to be compiled"

>>

object Parser

...

end

This call is equivalent to “@feature("doc", doctext)” in which doctext is the text that appears
between << and >> in this example.

There is a pre-defined metaobject javacode that inserts Java code in Cyan programs:

object Out

fun println: (String s) {

@javacode(**

System.out.println(s);

**)

}

...

end

As soon as possible this metaobject will be eliminated.
Metaobject subprototypeList should be attached to a prototype declaration. It limits the inheri-

tance of the prototype.

package main

@subprototypeList(AddExpr, MultExpr, LiteralExpr)

abstract object Expr

abstract fun eval -> Int

end

Prototype Expr can only be inherited by prototypes AddExpr, MultExpr, and LiteralExpr.
Metaobject onChangeWarn may be attached to a prototype (including interfaces), a method declara-

tion, or an instance variable declaration. This metaobject adds information to the XML file describing
the current source code. This information will be used in future compilations of the source code even if
the metaobject call is removed from the code. Using onChangeWarn one can ask the compiler to issue a
warning whenever the signature of a method was changed, even after the programmer deleted the call to
onChangeWarn:

object Test

@onChangeWarn( #signature,

"This signature should not be changed." +

" Keep it as ’fun test’")

fun test { ... }

end

If the signature was changed to
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object Test

fun test: (Int n) { ... }

end

the compiler would issue the warning given in the second parameter of the call to onChangeWarn. All
methods of the same name are grouped in the same set — they all can be considered as the same multi-
method. By change in the signature we mean any changes in this set, which may be addition of method,
deletion of method, changes in the parameter type of any method, changes in the return value type of
all methods.

onChangeWarn takes two parameters. The first specifies the change, which may be:

(a) #signature for changes in the method signature;

(b) #name for changes in the name (used for prototypes);

(c) #type for changes in the return type of a method, type of a variable;

(d) #qualifier for changes in the visibility qualifier (public, protected, private);

(e) #all for any changes whatsoever.

The second parameter gives the message that should be issued if the change specified in the first one
was made. It should be a string. Other metaobjects that makes the linking past-future will be added to
Cyan. Await.

There are other metaobjects used in the Cyan library. For example, there is checkAddMethod that
checks whether the parameters to the grammar method addMethod: ... of Any are correct. And there
are metaobjects for defining literal objects in the language — see Section 13.

5.2 Syntax and Semantics

Cyan metaobjects may take parameters which may be followed by an arbitrary text. The parameters are
given between ( and ), { and }, or [ and ]. Commas separate the arguments as in a method call. The
text that follows the parameters should be delimited by two sequences of symbols that we will call left
and right symbol sequence. The left sequence of symbols should be put after the metaobject name or the
character that closes the parameter list. The right symbol sequence should be the mirror of the first. A
metaobject that may take parameters may accept zero parameters — it depends on the metaobject. In
this case, there should appear the symbols (), [], or {} after the metaobject name:

@meta()

As an example of metaobject calls without the text we have:

1 @annot( #Author )

2 @annot{ #today }

3 @annot[ important }

4 var String name;

5

6 @checkStyle // without parameters

7 @authors( {# "José", "Carolina" #} )

8 @version(3.21)

9 object Person ... end
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Here important is not a basic Cyan literal. But it is a Cyan identifier which is converted to a symbol
before being passed to the metaobject. Then

@annot[ important }

is the same as
@annot[ #important }

The following example gives metaobject calls with a text:

1 var Array<Char> myText = @text(trim_spaces)[(* this is

2 a text which ends with * ) }, but

3 without spaces

4 *)];

5

6 var Graph aGraph = @graph<**

7 (0, 1), (0, 2), (0, 3),

8 (1, 2), (2, 1), (3, 0),

9 (3, 2)

10 **>;

The valid symbols are:
!@$%&*()-+={}[]^~<>:?/

Note that symbols " , ; . # ’ ´ ‘ cannot be used. A metaobject may be called using any set of
symbols.

Whenever there is a (, {, or [ after the metaobject name, not followed by any valid sequence symbol,
the compiler will assume that there is a parameter list. So, in @meta(a, b) there is a parameter list
with parameters #a and #b. But in @meta(+a, b+) there is no parameter list. “a, b” is the text of the
metaobject call.

When the compiler finds a metaobject call such as “@annot(9)”, it searches for a Java class, subclass
of CyanMetaobject, that treats this metaobject. That is, method getName() of an object of this class
returns "annot".

Then the compiler calls method mayTakeArguments of this Java object. If it returns true, the
metaobject may accept literal expressions of basic types as parameters. If it returns false the metaobject
never accepts parameters.

Metaobject annot is of the first kind. text is of the second kind.
Both kinds of metaobjects are delimited by two sequences of symbols that we will call left and right

symbol sequence. The left sequence of symbols should be put, without spaces, after the metaobject name.
The right symbol sequence should be the mirror of the first. Then valid metaobject calls are:

1 @annot( #Author )

2 @annot<& #Author &>

3 @annot[#Author]

4 @name

5 @name([+Ok, this ...end+])

6 @name([+ Ok, this

7 ... end +])

8 @text<<< this is

9 a text which ends with < < <, but

10 without spaces

11 >>>

12 @text{ another text
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13 this is the end: }

The valid symbols are:
!@$%&*()-+={}[]^~<>:?/

Note that symbols " , ; . # ’ ´ ‘ cannot be used. A metaobject may be called using any set of
symbols. In lines 1, 2, and 3, annot is called with the same parameter in three different ways.

Depending on the methods defined by the metaobject, the compiler passes to a method of the metaob-
ject:

(a) the text between the two sequences of symbols;

(b) the parameters between the two sequences of symbols;

(c) the AST of the text between the two sequences of symbols.1

The call of line 1 could be in the last case. Here “#Author” can be evaluated at compile-time resulting
in a string that is passed as argument to a method of metaobject annot.

Options can be passed to the metaobject between ( and ) (or and or { and }). After the ), there
should appear at least one space and another set of symbols starting the text:

@meta(option1, option2, ... optionN) <<+ ... +>>

Of course, any valid delimiter may replace <<+ or +>>. The options may be any valid Cyan identifier
that start with a letter.

Metaobject text has an option trim_spaces to trim the spaces that appear before the column of @
in @text. As an example, variables t1 and t2 have the same content.

var t1 = @text(&

starts at

line 1

&);

var t2 = @text(trim_spaces) <<<*

starts at

line 1

*>>>;

assert: (t1 == t2);

Assume that the text editor trims spaces before the last non-blank character in a line. If there is any
non-blank character in a column smaller than the colomn of @, metaobject text issues an error.

5.3 Metaobject Examples

Compile-time metaobjects have thousands of applications. We describe next some metaobjects without
giving any hint on how they will be implemented (there is no MOP yet).

A metaobject singleton may be used to implement the design pattern singleton [GHJV95].

// CTMO on an object

@singleton object Earth

fun mass -> Float { ^earthMass }

Float earthMass = 6e+24;

...

end

1Currently the compiler does not support this.

118



The metaobject redefines method clone and new.

fun clone -> Earth { ^Earth }

@prototypeCallOnly

fun new -> Earth { ^Earth }

It also checks whether there is any other init, clone, or new method declared in the prototype body. If
there is, it signs an error.

Metaobject profilePrototype inserts code before every method of the prototype to count how many
times every method was called. The results are added to a file. At the end of the program, the runtime
statistics of calls may be printed.

Metaobject beforeCode should be attached to a method. It inserts some code to be executed before
the execution of the method code. For example, it could initiate a transaction in a data base or lock
some data in a concurrent program.

5.4 Codegs

There is a special kind of compile-time metaobject called Codeg (code + egg) that makes the integration
between the compiler and the IDE used with Cyan. Each codeg works like a plug-in to the IDE but
with the added power of being a metaobject of the language. There are many technical details of the
workings of a codeg. Few of them will be given here. For more information, read the report [Vid11] (in
Portuguese).

Codegs have been fully implemented using the IDE Eclipse [?] by adding a plug-in to it. Therefore
currently codegs work only in Eclipse. After installing the Codeg plug-in and defining a project as being a
“Cyan project”, source files ending with “.cyan” will receive special treatment. Let us shown an example
using codeg “color”2. When the user type

@@color(red)

the Eclipse editor loads a Java class to memory that treats the codeg “color”. This text will be shown in
a color different from the rest of the code (the color will be blue regardless of the codeg). By putting the
mouse pointer above @@color(red), a standard menu will appear which allows the editing of this codeg
call.3 This menu is standard just by convention — the codeg designer is free to choose another one if she
so wishes.

By clicking in an “edit” button in the menu, another window will appear with a disk of colors. A
color may now be chosen with the mouse. After that, the user should click in the “Ok” button. All
codeg windows will disappear and the source code editing may continue. Now when the mouse pointer
is over the text “@@color(red)” the standard menu will appear with an edit button and a bar showing
the chosen color (it is expected that “red” was chosen).

This is what happened at editing time. When the compiler finds the codeg call “@@color(red)” it
will load the codeg class (written in Java), create an object from it, and calls method getCode of this
object. This method takes a parameter of class CodeGenerationContext that gives information on the
compilation itself. In future versions of the compiler, the AST of the current source code will be available
from the CodeGenerationContext object. Currently this class only provides two methods: getLanguage
and getCodegsList. The first method returns the target language of the codeg, which may be Java or
Cyan. In due time, there will be only the options AST and Cyan. Method getCodegsList returns a list
of codegs of the same source code. This allows communications among the codegs of the same file.

Method getCode returns an object of class CodeGeneration. This class has three methods that return
the generated code:

2For didactic reasons, the codeg described here may differ from the real implementation.
3Since codegs are metaobjects, this is a metaobject call.
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String getLocalCode()

String[] getImports()

String getGlobalCode()

The string returned by getLocalCode replaces the codeg call, “@@color(red)”. It should be compiled
by the compiler and may contain errors although it is expected that it does not. This code may need
packages that were not imported by the source file in which the codeg call is. The packages used in the
code returned by getLocalCode should be returned by method getImports. Finally, getGlobalCode
returns code that should be added just after the import section of the source code in which this code is.
So, suppose we have a code like

package main

object Program

fun run {

Out println: @@color(red)

}

}

Consider that method getCode of codeg color (which is a Java class called ColorCodeg) returns an object
of CodeGeneration whose methods return the following:

String getLocalCode() returns "RGBColor new: 255, 0, 0"

String[] getImports() returns "RGB"

String getGlobalCode() returns "/* global code */"

Then the compiler will add these strings to the source code in such a way that the program above will
become

package main

import RGB

/* global code */

object Program

fun run {

Out println: (RGBColor new: 255, 0, 0)

}

}

It is expected that prototype RGBColor is in package RGB.
Method getCodegsList is used for communication among the codegs of the same source file. Codegs

world and actor use this method. They implement a very small programming learning environment
that resembles Greenfoot [?].

package main

object Program

fun run {

@@world(myWorld)

@@actor(ladybug)

@@actor(butterfly)

}

}
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The world codeg call generates code that creates a windows in which all actions will happen. At editing
time, the user may choose the size of the window and its background color.

Codeg actor defines an actor that will be added to the world at runtime. At editing time, the user
may choose a color for the actor4 and the code the actor should obey. This code is given in a small
language called Locyan defined in the report [dOGa11] (in Portuguese). It is a Logo-based language
[LF12].

It is an error to define two codegs “actor” with the same name:

@@actor(ladybug)

@@actor(ladybug)

But how the actor codeg may detect this? Using getCodegList. A codeg actor call scans the list of
codegs returned by this method searching for a codeg with the same name as the current one. If it founds
one, it issues an error.

Codeg world is responsible for creating the actor objects and putting them in motion. This motion
is specified by the Locyan code associated to each actor. Therefore the world codeg calls getCodegsList
to retrieve the codegs of the same source code. It uses this information in order to generate code.

Several other codegs have been implemented:

(a) color, world, and actor, already described;

(b) matrix, which allows a two dimensional matrix to be edited like a spreadsheet;

(c) image, that encapsulates the path of an image in the file system. A future improvement would be to
keep the image itself in the codeg;

(d) file, that encapsulates the path of a file and options for reading or writing. The generated code is
the creation of an object representing a file with the options chosen;

(e) text, which pops up a text editor and returns the edited text either as a String or an array of
Char´s. A generalization of this would allow code in HTML or XML inside Cyan code.

Nowadays when the mouse pointer is on a codeg call such as “@@color(red)” the codeg plugin of
the IDE shows a menu. This menu includes a bar with the color in this case. Or the image in the image

codeg. Future versions of the plugin may replace the codeg call with an image. Then
var RGBColor color = @@color(black);

would be shown as
var RGBColor color = ;

in the editor. In the codeg image, the real image would be shown.
The metaobject protocol of codegs is minimal. That needs to be changed. It is necessary to add to

the protocol:

(a) better mechanisms for communication among codegs of the same source file;

(b) communication of codegs of different source files. Then code generated in one source file may depend
on options of another source file. This will probably be used in the implementation of Design Patterns
that need more than one prototype;

(c) access to compiler data such as the local variables, prototype name, source file name, compiler options,
etc. For short, the whole AST and other compiler information should be available to the codegs;

(d) methods that return the code generated by the codeg in form of the AST.

4It would be good to allow the user to choose a picture instead of just a color — this will be allowed some day.
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There are endless uses for codegs. We can cite some codegs that we would like to implement. Most
of them depend on features that are not available nowadays.

(a) An interactive console for Cyan similar to those of scripting languages. The user could just type
@@console()

in any Cyan source file and experiment with the language.

(b) Codeg test for testing. This codeg could show a spreadsheet with expressions that are evaluated at
compile time:

In this figure, “name” is used without qualification. It could be a local variable or an instance variable
or method of the prototype in which the codeg is declared.

The codeg would load the last compiled prototypes cited in the spreadsheet. Then it would create,
compile, and run the code of the cells, checking the results. Errors could be shown in red. More than
that: all test codegs could communicate with a programTest codeg that would shown all the places
with errors. The test codeg could offer tools for make it easy to do test the program.

(c) Codegs that implement design patterns. The programmer gives the information and the codegs
generate the code. There should be an option for replacing the codeg call with the generated code.

(d) PerfectHashtable that generates a perfect hash table given a list of fixed keys.

(e) codegs to help to build grammar methods — Chapter 9.

(f) FSM which allows one to define graphically a finite state machine. The generated code would be an
object of prototype FSM.

(g) TuringMachine. As the name says, the user could define graphically a Turing machine (much like
the FSM).

The problem with codegs is that they link tightly the source code and the IDE. Changing the IDE
means losing the codegs if the new IDE does not support exactly the same set of codegs the old one
supports. Although this can bring some problems, it is not so bad for two reasons:

(a) the compiler will continue to work as expected because it uses the data collected in the old IDE.
Although this data cannot be changed by a Codeg in the new IDE, the code will continue to compile;

(b) it is easy to add to the compiler an option that makes it replace every codeg call by the code produced
by that codeg call. This will eliminate all codegs from a source code. And with them the dependency
from the old IDE.

Textual programming has dominated programming languages for a long time. By textual programming we
mean that all source code is typed in a text editor as is made in C/C++/Ruby/Java/C#/Lisp/Prolog/etc.
There has been several attempts to change that such as the integrated environment of Smalltalk and visual
programming languages. It is difficult to imagine software development within one hundred years based
on full textual representation of programs like most of the code made today. There should be some visual
representation. Codegs are another attempt to achieve that.
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5.5 Macros

A macro is a function called at compile time that produces code that replaces the macro call. They can
be used to capture common patterns of code, implement Domain Specific Languages, eliminate repetitive
statements and boilerplate code. Cyan supports a restricted but powerful macro feature. Macros in
Cyan are also metaobjects. They have some but not all the power of regular metaobjects. There are two
ways of defining a macro in the language: a low-level and a high-level way. Macros defined in a low-level
These will be called LL-macro and HL-macro. First we will describe the low-level macros. The high-level
ones are implemented in terms of the low-level ones. That is, a source code that defines a HL-macro is
translated by the compiler into a source code of a LL-macro.

An LL-macro is a regular Java class which should inherit from class CyanMetaobjectMacro of package
meta. This is a class supplied with the Cyan compiler. Many other Java classes of the Cyan compiler
are employed in the definition of a macro (or any other metaobject). Of course, a Cyan prototype or a
class of another language compiled to the Java Virtual Machine can be used as a LL-macro. It only has
to obey the name conventions described in this text.

As a subclass of CyanMetaobjectMacro, an LL-macro should implement the following methods defined
in its superclass:

(a) abstract public String []getStartKeyword();

This method should return a list of keywords that may start the macro. These keywords are specific
to this macro, they are not Cyan keywords. For example, a macro “assert” with the syntax

assert size > 0;

should return new String [] { "assert" } .

(b) abstract public String []getKeywords();

This method should return a list of all keywords that this macro uses. For example, consider a macro
that emulates the extended “for” of Java. It would be used, in Cyan, as

var Array<Int> aList = {# 0, 1, 2 #};

var sum = 0;

// sum the array elements

for n in aList {

sum = sum + n

};

There are two keywords in this macro: “for” and “in”. Then method getKeywords of the LL-macro
should be

public String []getKeywords() {

return new String[] { "for", "in" };s

}

This list is used by the Cyan compiler to parse expressions. Without this list, the compiler would
guess that “in aList” in the above example is the sending of method aList to variable in. Or
the sending of message in to variable n. With this list of keywords, the compiler knows where an
expression or a statement ends.
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(c) public StringBuffer bti_cyanCodeThatReplacesMetaobjectCall(ICompiler_bti compiler,

int offsetStartLine)

If this method returns a non-null value, the compiler replaces the macro call by the string returned
by this method. For example, suppose class

CyanMetaobjectMacroAssert

defines this method in such a way that, in a call to the macro “assert” in code

var Int size = anArray size;

assert size > 0;

Out println: "Ok";

this method returns
"if ( !(size > 0) ) { System exit: 1 };

Then the compiler will produce the code

var Int size = anArray size;

if ( !(size > 0) ) { System exit: 1 };

Out println: "Ok";

The compilation will resume at Cyan keyword “if”. Of course, the code returned by
bti_cyanCodeThatReplacesMetaobjectCall

can have other macro calls. If there is always a call to assert then we end up in an infinit loop.

Parameter compiler of type ICompiler_bti of this method is used for parsing the macro call.
ICompiler_bti is defined as

public interface ICompiler_bti {

void next();

Symbol getSymbol();

Expr expr();

void error( Symbol sym, String specificMessage,

String identifier, ErrorKind errorKind,

String ...furtherArgs );

}

Method getSymbol() of parameter compiler returns the current token of the compilation, the one
returned by the lexical analyzer. Class Symbol is defined in package lexer of the Cyan compiler.
Method next gets the next token. After this method is called getSymbol() will return the symbol
found by the call to next.

When the symbol is a macro keyword (of this specific macro), the symbol will be of class SymbolMacroKeyword.
The token will be MACRO_KEYWORD. Then to discover if the current token is a macro keyword and this
keyword is “in”, use the following code:

if ( compiler.getSymbol().token == Token.MACRO_KEYWORD &&

compiler.getSymbol().getSymbolString().equals("in") )

System.out.println("found ’in’");

A macro keyword of another macro that is not the currently being analyzed is treated as a regular
identifier.
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Method expr() parses an expression. It will sign an error if an expression is not found. This method
returns an object of Expr that is a class of the Abstract Syntax Tree (AST) of the Cyan compiler.
Method error() should be called to sign an error in the macro compilation. The first parameter is
the symbol that caused the error, null if none. The second is the error message. The third is the
identifier associated to the error, null if none. The fourth is a constant of enumeration ErrorKind

of this error message. If none is appropriate, use error_in_macro. The last parameter should not
be supplied (for the time being).

The second parameter to bti_cyanCodeThatReplacesMetaobjectCall is offsetStartLine. This
is the number of characters from the start of the line to the first macro character. It is used
with identation purposes. To better understand how macros work, study this method of class
CyanMetaobjectMacroAssert. This code uses static variables whiteSpace and sizeWhiteSpace

of class CyanMetaobjectMacro. whiteSpec is a string of white spaces and sizeWhiteSpace is the
size of this string.

package meta;

import java.util.ArrayList;

import error.ErrorKind;

import lexer.Token;

import ast.*;

/**

* This class represents macro ’assert’

*

@author José

*/

public class CyanMetaobjectMacroAssert extends CyanMetaobjectMacro {

public CyanMetaobjectMacroAssert() {

}

@Override

public ArrayList<MetaobjectError> errorMessageList() {

return null;

}

@Override

public String []getStartKeyword() {

return new String[] { "assert" };

}

@Override

public String[] getKeywords() {

return new String[] { "assert" };

}

@Override
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public StringBuffer bti_cyanCodeThatReplacesMetaobjectCall(

ICompiler_bti compiler, int offsetStartLine) {

compiler.next();

Expr e = compiler.expr();

if ( compiler.getSymbol().token != Token.SEMICOLON )

compiler.error(compiler.getSymbol(), "’;’ expected", null,

ErrorKind.semicolon_expected, new String[] {});

else

compiler.next();

StringBuffer s = new StringBuffer();

if ( offsetStartLine > CyanMetaobjectMacro.sizeWhiteSpace )

offsetStartLine = CyanMetaobjectMacro.sizeWhiteSpace;

String identSpace = CyanMetaobjectMacro.whiteSpace.substring(0, offsetStartLine);

s.append("if !(");

s.append(e.asString() + ") {\n");

s.append(identSpace + " System exit: 1;\n");

s.append(identSpace + "};\n");

return s;

}

}

Method bti_cyanCodeThatReplacesMetaobjectCall is called by the Cyan compiler “before typing
interfaces” (bti). That is, before the compiler discover the types of instance variables, constantes,
method parameters, and method return value types. And long before the compiler knows the types
of local variables and expressions inside methods. Then this macro cannot check whether the assert
expression is of type Boolean (it should be). A statement

if ( e.getType() != Type.Boolean ) compiler.error(...)

after
Expr e = compiler.expr();

would result in a runtime error signed by method getType().

To know the type of expression e one should implement this macro using method
dsa_cyanCodeThatReplacesMetaobjectCall

/**

* the compiler will replace the macro call by the string

* returned by this method, if it returns a non-null value.

* If the return value is null, a list of error messages

* can be got by calling errorMessageList

* @param offsetStartLine TODO

*/

/**

* The code returned by this method replaces the metaobject call. Then in a macro call

* assert i == 0;

*
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* if method bti_cyanCodeThatReplacesMetaobjectCall of the macro assert returns

* "if ( !(i == 0) ) { System exit: 1 };"

* this string will replace "assert i == 0" in the code:

*

* This method is called during semantic analysis.

*

@return

*/

public StringBuffer dsa_cyanCodeThatReplacesMetaobjectCall() {

return null;

}

A macro should be defined in a regular public prototype with one and just one of the methods prefixed
by the keyword “macro”. Whenever a compilation unit imports the package of this prototype5 it will be
importing the macro. Methods prefixed by keyword “macro” should be public and they can be grammar
methods. In this section we will give only non-grammar methods as examples.

5Or imports only the prototype, which will soon be allowed in Cyan.
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Chapter 6

Dynamic Typing

A dynamically-typed language does not demand that the source code declares the type of variables,
parameters, or methods (the return value type). This allows fast coding, sometimes up to ten times
faster than the same code made in a statically-typed language. All type checking is made at runtime,
which brings some problems: the program is slower to run and it may have hidden type errors. When a
type error occur, usually the program is terminated. Statically-typed languages produce faster programs
and all type errors are caught at compile time. However, program development is slower.

The ideal situation is to combine both approaches: to develop the program using dynamic typing
and, after the development ends, convert it to static typing. Cyan offers three mechanism that help to
achieve this objective.

The first one is dynamic message sends. A message send whose selectors are preceded by ? is not
checked at compile-time. That is, the compiler does not check whether the static type of the expression
receiving that message declares a method with those selectors. For example, in the code below, the
compiler does not check whether prototype Person defines a method with selectors name: and age: that
accepts as parameters a String and an Int.

var Person p;

...

p ?name: "Peter" ?age: 31;

This non-checked message send is useful when the exact type of the receiver is not known:

fun openArray: (Array<Any> anArray) {

anArray foreach: { (: Any elem :)

elem ?open

}

}

The array could have objects of any type. At runtime, a message open is sent to all of them. If all
objects of the array implemented an IOpen interface,1 then we could declare parameter anArray with
type Array<IOpen>. However, this may not be the case and some kind of dynamic message send would
be necessary to call method open of all objects.

If every message selector (such as open in the above examples) is preceded by a ? we have transformed
Cyan into a dynamically-typed language. If just some of the selectors are preceded by ?, then the program
will use a mixture of dynamic and static type checking.

Keyword Dyn is used for a dynamic type in Cyan. Dyn is not a prototype. It is a virtual type that
is supertype and subtype of every other prototype including Nil. Therefore assignments to and from

1With a method open.
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Dyn are always legal at compile-time. At runtime there is a check in assignments from Dyn to any other
type (that includes, of course, parameter passing, which is a kind of assignment). At runtime the Dyn

expression should refer to a prototype that is subtype of the type of the left-hand side variable.2

var Person p;

var Dyn dynVar;

...

p = dynVar;

In the assignment the compiler inserts a check to verify whether dynVar refer to an object whose type is
subtype of Person. Nil can be assigned to a Dyn variable and an expression whose type is Dyn can be
assigned to a variable whose type is Nil.

Assignments whose left-hand side is Dyn need not to be checked either at compile or runtime. Sinde
Dyn is not a prototype, it cannot be used as an expression:

(Dyn prototypeName) println; // compile-time error

A message sent to a receiver whose type is Dyn is not checked by the compiler. The return value type
of the message send is considered to be Dyn too. Then if the type of a variable is Dyn we can send to it
a regular message, without ? preceding the selectors.

var Dyn p = Person;

p name: "Peter" age: 31;

The compiler will not do any checking. This is equivalent to declare p with any other type and use ?

before the selectors. Dyn is considered a supertype and a subtype of any prototype. Of course, it is a
virtual type, there is no source file Dyn.cyan.

The return value type of a message send is considered to be Dyn when the selector is Dyn. Therefore
the return value is not checked. In this example, the compiler consideres that get: returns Dyn and,
since it is a subtype of Boolean, there is no error.

var Dyn t = MyHashtable<String, String>;

if t get: "one" == "1" {

"found one" println

};

A call
obj ?set: 11;

is roughly equivalent to
obj selector: "set:" param: 11;

in which selector:param: is a method inherited from Any by every Cyan object. It invokes the method
corresponding to the given selector using the parameters after param:. Therefore #message sends are
a syntax sugar for a call to the selector:param: method with one important difference: the compiler
does not do any further type checking with the return type of the method. That is, any use of the return
value is considered correct.

var stack = Stack<Int>

// no compile-time error here

stack push: (obj ?get);

// no compile-time error here

if obj ?value {

stack push: 0

2or indexing expression like “a[0] = dynVar”.
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};

The compiler just checks, in “stack push: (obj ?get)” that Stack<Int> has a method push: that
accepts one parameter. When the return value of a dynamic message is assigned to a variable declared
without a type, the compiler considers that the type of the variable is Any.

var n = obj ?value;

assert: (n prototypeName) == "Any";

Several statically-typed languages such as Java allows one to call a method using its name (as a string)
and arguments. Cyan just supplies an easy syntax for doing the same thing. Section 4.13 describes the
selector:param: method which is in fact a grammar method. Grammar methods are described in
Chapter 9.

Dynamic checking with ? plus the reflective facilities of Cyan can be used to create objects with
dynamic fields. Object DTuple of the language library allows one to add fields dynamically:

var t = DTuple new;

t ?name: "Carolina";

// prints "Carolina"

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t ?age: 1;

// prints 1

Out println: (t ?age);

Here fields name and age were dynamically added to object t. Whenever a message is sent to an object
and it does not have the appropriate method, method doesNotUnderstand is called. The original message
with the parameters are passed to this method. Every object has a doesNotUnderstand method inherited
from Any. In DTuple, this method is overridden in such a way that, when a DTuple object receives a
message ?id: expr without having a ?id: method, doesNotUnderstand creates:

(a) two methods, id: T and T id, in which T is the dynamic type of expr;

(b) a field _id of type T in the DTuple object. Prototype DTuple inherits from a mixin that defines a
hash table used to store the added fields.

Then message ?id: expr is sent to the object (now it does have a ?id: method and no runtime error
occurs).

The above code can be made more legible by declaring t with type Dyn.

var Dyn t = DTuple new;

t name: "Carolina";

// prints "Carolina"

Out println: (t name);

// if uncommented the line below would produce a runtime error

//Out println: (t age);

t age: 1;

// prints 1

Out println: (t age);

Cyan supports the ‘ operator (backquote) which “link the runtime value of a String variable to a
compile-time meaning of this value”. Each selector preceded by backquote should be a variable of type
String or CySymbol. It cannot be an instance variable accessed through self as self.name.
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var String s = "print";

0 ‘s;

The real selectors is not the variable name but the contents of the variable. That is, the method to be
called is the value of the variable, "print", which is a string. In a message send with parameters the
variable names should be followed by : as usual.

var String s = "key", p = "value";

MyHashtable ‘s: "one" ‘p: "1";

The method to be called has name s + ":" + p + ":", in which + is used for concatenating strings.
That is, the method to be called is key:value:.

The return value of a backquote message send is Dyn. Then the return value can be assigned to any
variable and passed as parameter to any method. The compiler will insert runtime checks in the code.
Let us study one more example of backquote message sends.

var String selector;

selector = String cast: ((In readInt > 0) t: "prototypeName" f: "asString");

// a runtime test is inserted to check if the result

// is really a String

var result String = 0 ‘selector;

Out println: result;

Here 0 ‘selector is the sending of the message given by the runtime value of selector to object 0. If
selector is "prototypeName", the result will be "Int". If selector is "asString", the result will be
"0".

The backquote operator cannot be used in a chain of unary message sends. Then it is illegal to write
either

club ‘first ‘second

or
club members ‘second

That is, a chain of message sends in which there is a backquote should have size one.
Language Groovy has this mechanism for message sends:

animal."$action"()

The method of animal called will be that of variable action, which should refer to a String.
The second and third mechanisms that allow dynamic typing in Cyan are the metaobjects dynOnce

and dynAlways. These are pre-defined metaobjects — it is not necessary to import anything in order
to use them.

Metaobject @dynOnce makes types optional in declarations of variables and methods of the prototype
it is attached to. For example, the instance variables and parameters of prototype Person are declared
without a type:

@dynOnce object Person

fun init: (newName, newAge) {

name = newName;

setAge: newAge

}

fun print {

Out println: "name: ", name, " (", age, ")"

}
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fun setAge: ( newAge ) {

if newAge >= 0 and newAge <= MaxAge {

age = newAge

}

}

private name

private age

private const Int MaxAge = 126

end

The compiler will not issue no error or warning. After the program runs for the first time, it may be
the case that an object of prototype Person is used — maybe Person itself receives messages or maybe
an object created from Person using clone or new receives messages. In any case, metaobject dynOnce

inserts statements in the generated Person code to collect information on the types of variables and
return value types of methods. At the end of the first execution of the program, code inserted by the
metaobject dynOnce can insert in the source code the type of some or all of the variable and method
declarations. As an example, suppose object Person is used in the following code and only in this code:

Person name: "Maria";

Person setAge: 12;

Person print;

Code inserted by the metaobject detects in the first run of the program that instance variable name has
type String and age has type Int. Then at the end of the execution another code inserted by the
metaobject dynOnce changes the source code transforming it into

object Person

fun init: (String newName, Int newAge) {

name = newName;

setAge: newAge

}

fun print {

Out println: "name: ", name, " (", age, ")"

}

fun setAge: ( Int newAge ) {

if newAge >= 0 and newAge <= MaxAge {

age = newAge

}

}

String name

Int age

private const Int MaxAge = 126

end

If it was possible to discover the types of all variables and methods declared without types, the dynOnce

metaobject call is removed, as in this example. But it may happens that part of the code is not exercised
in a single run (or maybe in several or any execution of the program). In this case, a variable that did
not receive a value at runtime do not receive a type. And the metaobject call @dynOnce is kept in the
source code.

There are some questions relating to dynOnce that need to be cleared. The most important question
is that the implementation of methods with typeless parameters and return value (untype methods) is
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different from the implementation of typed methods. Consequently, message sends to typed methods is
different to message sends to untyped methods. Then how do we generate code for the statement

p print

knowing that p was declared as having type Person? The problem is that a subclass Worker of Person
may not use dynOnce — it may be typed. And it may override method print, which means p print

may call print of Person (call to an untyped method) or print of Worker (call to a typed method). The
two calls should be different. A solution is:

1. to allow a prototype without dynOnce to inherit from a prototype with dynOnce but not vice-versa.
Then there should be a special Any prototype for dynamic typing and there should be conversions
between these two Any prototypes;

2. in a message send such as “p print”, the compiler generates a test to discover whether p refers
to an object with or without dynOnce. Then two different call would be made according to the
answer. At compile time, the type of p, Person was declared with dynOnce. Using this information,
all message sends whose receiver has type Person would have the test we just explained. But if the
receiver has a type which was not declared with dynOnce the generated code for the message send
would be the regular one — it will be assumed that the message receiver can only refer to objects
that were declared (or its prototype) without dynOnce.

The third mechanism that allows dynamic typing in Cyan is dynAlways. A prototype declaration
preceded by @dynAlways should not use types for variables and methods. All declarations of variables
(including parameters, instance variables, and shared variables) and method return values should not
mention the type, as in dynamically-typed languages. This metaobject would generate code for message
sends appropriately. This metaobject has problems similar to dynOnce (which are explained above).

It is important to note that we have not defined exactly neither how dynOnce and dynAlways will act
nor how they will be implemented. This is certainly a research topic.

During the design of Cyan, several decisions were taken to make the language support optional typing:

(a) types are not used in order to decide how many parameters are needed in a message send. For
example, even if method get: of MyArray takes one parameter and put: of Hashtable takes two
parameters, we cannot write

n = Hashtable put: MyArray get: i, j

The compiler could easily check that the intended meaning is

n = Hashtable put: (MyArray get: i), j

by checking the prototypes Hashtable and MyArray (or, if these were variables, their declared types).
get: should have one parameter and put: should have two parameters. However, if the code above
were in a prototype declared with dynAlways or dynOnce, this would not be possible. The type
information would not be availabe at compile time. Therefore Cyan consider that a message send
includes all the selectors that follow it and that are not in an expression within parentheses. To
correct the above code we should write:

n = Hashtable put: (MyArray get: i), j

(b) when a method is overloaded, the static or compile-time type of the real arguments are not taken
into consideration to chose which method will be called at runtime. In the Animal, Cow, and Fish

example of page 83, the same methods are called regardless of the static type of the parameter to
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eat:. Therefore when metaobjects dynOnce or dynAlways are removed from a prototype (after giving
the types of the variables and methods), the semantics of the message sends is not changed.

There is one more reason to delay the search to runtime: the exception system. Most exception
handling systems of object-oriented languages are similar to the Java/C++ system. There are catch
clauses after a try block that are searched for after an exception is thrown in the block. The catch
clauses are searched in the declared textual order. In Cyan, these catch clauses are encapsulated in
eval methods with are searched in the textual order too. The eval methods have parameters which
correspond to the parameters of the catch clauses in Java/C++. The eval methods are therefore
overloaded. The search for an eval method after an exception is made in the textually declared order
of these methods, as would be made in any message send whose correspondent method is overload.
This matches the search for a catch clause of a try block in Java/C++, which appear to be the best
possible way of dealing with an thrown exception. And this search algorithm is exactly the algorithm
employed in every message send in Cyan;

(c) the Cyan syntax was designed in order to be clear and unambiguous even without types. For example,
before a local variable declaration it is necessary to use “var”, which asserts that a list of variables
follow, preceeded or not by a type. For example, the declaration of Int variables in Cyan is

var Int a, b, c;

In a prototype declared with dynOnce or dynAlways, this same declaration would be
var a, b, c;

A method declaration would be
fun sqr: (Int x) -> Int { ^ x*x }

in a regular prototype and
fun sqr: x { ^ x*x }

in a prototype declared with dynOnce or dynAlways.
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Chapter 7

Generic Prototypes

Generic prototypes in Cyan play the same rôle as generic classes and template classes of other object-
oriented languages. Unlike other modern languages, Cyan takes a loose approach to generics. In many
languages, the compiler guarantees that a generic class is type correct if the real parameter is subtype of a
certain class specified in the generic class declaration. For example, a generic class Hashtable takes a type
argument T which should be subtype of Hashable, an interface with a single method Int hashCode (using
Cyan syntax). Then whenever one uses Hashtable<A> and A is subtype of Hashable, it is guaranteed
that Hashtable<A> is type correct — the compiler does not need to check the source code of Hashtable
to assert that. In Cyan, Hashtable has to be compiled with real argument A in order to assure the type
correctness of the code. This has pros and cons. The pro part is that there is much more freedom in Cyan
to create generic prototypes. The con part is that any changes in the code of a generic prototype can
cause compile-time errors elsewhere. Cyan does not supports the conventional approach for two reasons:
a) there would not be any novelty in it (no articles about it would be accepted for publishing) and b)
the freedom given by the definition of Cyan generics makes them highly useful — see the examples given
here, in Section 12.5, and in Section 8.

There are several ways of declaring a generic prototype in Cyan. In the first and simplest way, a list
of parameters is given between < and > after the prototype name:

package ds

object P< T1, T2, ... Tn >

...

end

Parameters T1, T2, . . . Tn are called formal parameters of the generic prototype. There should be no
space between the prototype name, P, and the character “<”. Space may follow “<” as in

package ds

object Stack< T >

fun push: T elem { ... }

fun pop -> T { ... }

fun print {

array foreach { (: T elem :)

elem print // message print is sent to an object of type T

}

}
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...

end

After importing package ds, that declares Stack, one may use Stack if an argument is supplied:

var Stack<Int> intStack;

var Stack< Person > personStack;

Stack< Stack<Int> > prototypeName print;

intStack push: 0;

personStack push: aPerson;

However, there should be no space between the generic prototype name and “<”. That would cause a
compile-time error. If there is a space between the object name and “<”, the compiler will consider “<”
as the operator “less than”. Then in the code

if Stack < Int > {

"compile-time error in the line above" println

};

the compiler will consider that Stack is receiving message “<” with parameter Int which is followed by
“>”. The Cyan grammar does not allow multiple comparison operators in the same expression (that is,
“a < b < c > d” is illegal) and “>” demands a parameter, which does not appear in the code above.
Therefore there is a compile-time error even before the semantic analysis.

When the compiler finds “Stack<Int>” in a source code that imports package ds, it creates a brand
new prototype whose name is “Stack<Int>” by replacing the formal parameter T in prototype Stack<T>

by Int. This process is called instantiation of a generic prototype and Int is called a real parameter
to the generic prototype. There are restrictions on where a formal parameter can appear and when it is
replaced by a real parameter.

A formal parameter may appear as a selector name (both in a method declaration and in a message
send), type, identifier in an expression, parameter to an metaobject, after # (to define a symbol), and
instance variable name. It is illegal to declare any local variable and parameter whose name is a generic
prototype parameter. In any other case an identifier equal to a formal parameter is ignored in the
process of instantiation of a generic prototype. That is, the formal parameter is not replaced by the real
parameter in any other case.

More specifically, the compiler replaces a formal parameter by a real parameter if it is in a symbol
literal or it is an Id or IdColon of the following grammar rules. Id in QualifId is only replaced if QualifId
appears in the rules below.

QualifId ::= Id { “.” Id }
ExprPrimary ::= “self” [ “.” Id ] |

“super” UnaryId |

QualifId { “<” TypeList “>” }+ [ ObjectCreation ] |
QualifId { “<” TypeList “>” }+ |

“typeof” “(” QualifId [ “<” TypeList “>” ] “)”
MetSigUnary ::= Id
SelecGrammarElem ::= IdColon “(” Type “)” ( “∗” | “+” )

IdColon TypeList |

SelecWithParam ::= IdColon |

IdColon [ “[]” ] ParamList
MessageSendNonUnary::= { [ BACKQUOTE ] IdColon [ RealParameters ] }+
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InterMethSig2 ::= Id |

{ IdColon [ “[” ] [ InterParamDecList ] [ “]” ] }+
CTMOCall ::= (“@” | “@@” ) Id

[ (“(” | “[” | “{” ) ExprLiteral ( “)” | “]” | “}” ) ]
[ LeftCharString TEXT RightCharString ]

SingleType ::= QualifId { “<” TypeList “>” } | BasicType |

“typeof” “(” QualifId [ “<” TypeList “>” ] “)”
Let us see some examples.

object Nice< T > extends SuperNice<T> implements InterNice<T>

fun test {

// after a # to define a symbol

symbol = #T;

}

// selector name

fun T: (Char p) -> Int { return 0 }

// type

fun add: (T p) -> Int {

var T x = (T cast: 0) with: main.T;

return 0

}

// type

T x

end

The instantiation of Nice with Person will produce the prototype

object Nice< Person > extends SuperNice<Person> implements InterNice<Person>

fun test {

// after a # to define a symbol

symbol = #Person;

} // selector name

fun Person: (Char p) -> Int { return 0 }

// type

fun add: (Person p) -> Int {

var Person x = (Person cast: 0) with: main.Person;

return 0

}

// type

Person x

end

Another nice example:

object NiceToo< T >

// parameter to a metaobject call

@annot(T)

// unary selector name

fun T -> Int { return 0 }

end

The instantiation of NiceToo with Person will produce the prototype
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object NiceToo<Person>

// parameter to a metaobject call

@annot(Person)

// unary selector name

fun Person -> Int { return 0 }

end

There is a compile-time error if the formal parameter is the name of a parameter:

object Wrong< T >

fun myError: (Int T) { } // compile-time error

end

A formal parameter appearing as a substring of a Cyan symbol is not replaced.

object P<T>

fun print { #T1 print }

end

Prototype P<Int> is

object P<Int>

fun print { #T1 print }

end

because “T” is just a substring of “T1”.
In the same way, package names and imported packages are not replaced.

package T

import main.T

object P<T>

end

P<Person> is

package T

import main.T

object P<Person>

end

Currently there is no way of producing new symbols from formal parameters. There could be a +++

operator that is executed at compile-time to concatenate formal parameters and something else:

object P<T>

fun print { #T +++ 1 print }

end

Prototype P<Int> would be

object P<Int>

fun print { #Int1 print }

end

Till now we have found no need for such operators or to compile-time commands such as “static if” of
language D.

As said in Chapter 2, the source code of a Cyan source can be a XML file. In this file some information
on the source can be kept, as the restrictions that a generic prototype should obey. So the XML file can

138



keep that the generic parameter T of Hashtable should have a Int hashCode method. In this way the
compiler will be able to catch type errors in the instantiations of generic objects, such as to use an object
Person that does not have a hashCode method as parameter to Hashtable. This error would be caught
without instantiating Hashtable with Person and compiling the resulting code.

A type T may appear before a formal parameter P to demand that the real parameter that replaces
P in an instantiation be a prototype that is subtype of T.

object P< Writable T >

fun write: T elem {

elem write

}

end

interface Writable

fun write

end

P<Proto> is only legal if Proto is a subtype of Writable. However, there may be errors in the
instantiation of P<Proto> even if Proto is a subtype of Writable. The compiler does not enforce that
the operations used inside the generic prototype P are only those allowed on subtypes of Writable.

A qualified identifier is a sequence of Cyan identifiers separated by zero or more dots (“.”) as
“cyan.lang.Int” or “Int” (zero dots). In a generic prototype instantiation, each real parameter should
be a qualified identifier or a type. This last one can be a generic prototype instantiation. Then the
general format of a real parameter is given by rule RP of the grammar

RP ::= QualifId | Type
Type ::= SingleType { | SingleType }
SingleType ::= QualifId { “<” TypeList “>” } | BasicType
TypeList ::= Type { “,” Type }
QualifId ::= Id { “.” Id }
Anyway, the real parameter starts with a Cyan identifier. If this identifier starts with an upper-case

letter, the compiler considers that the real parameter is a type. Therefore this type should be visible in
the place of the generic prototype instantiation or a compile-time error will be signalled. Howerve, the
type cannot be a private prototype declared in the same source file in which the generic instantiation is.
If the identifier starts with a lower-case letter the compiler does not do any checking in the place of the
instantiation.

var Stack<A> s; // compiler checks if "A" is a prototype declared or imported

var Stack< Set<Char> > s; // compiler checks if "Set<Char>" is legal

var Nice<myId> n; // compiler does not check if "myId" is a prototype

The instantiation “Wrong<Array>” causes a compile-time error because there is no prototype “Array”.

object Wrong<T>

T<String> myData

...

end

There is a generic prototype “Array<T>” in package cyan.lang which is not related to a non-existing
non-generic Array prototype.

A call to the compile-time function typeof cannot be used as a parameter in a generic prototype
instantiation.
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var Int count = 0;

var Stack<typeof(count)> intStack; // compile-time error

Because of this restriction, the grammar for RP given above defines SingleType differently from the
grammar of Section 14.

A generic prototype may declare more than one generic parameter:

package ds

object Map<T, U>

fun key: (T aKey) value: (U aValue) { ... }

...

end

All formal parameters should have different names. Each of them should start with an upper-case letter
and there should be no prototype in package cyan.lang with the same name as the parameter. So a
parameter cannot have names “Tuple” or “Interval”.

Currently there is no way of declaring a private generic prototype in Cyan. The implementation of
this feature would make the compiler more complex. We believe private generic prototypes would be
rarely used and almost never necessary.

7.1 Generic Prototypes with Real Parameters

A prototype that is not generic can be declared using the generic prototype syntax:

package ds

object Stack<Int>

fun push: Int elem { ... }

fun pop -> Int { ... }

...

end

There may be both the generic prototype Stack<T> and this non-generic version in the same package.
In this case, Stack<Int> will refer to the non-generic version (the one above) and Stack<Char> will be
an instantiation of the generic prototype Stack. The details of this combination will soon be explained.

We will refer to a non-generic prototype declared using the generic prototype syntax as “generic
prototype with real parameters”. Each one of the parameters that appear inside <...> will be
called “real parameter”.

A real parameter of a generic prototype with real parameters can be:

(a) a single identifier starting with a lower-case letter such as “t” or “add”. For example,

interface ISingle<write>

fun write: Char

end

(b) a single identifier starting with an upper-case letter such that there is a prototype in package
cyan.lang with this same name. For example,

object P<Int>

fun add: Int { ... }

end
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(c) a qualified identifier; that is, a sequence of identifiers separated by “.” with at least one dot such as
“main.Person”. For example,

package ds

import main

interface MyList<main.Person>

fun add: Person

end

This qualifier identifier should be the full name of a prototype, which includes its package name;

(d) a generic prototype instantiation possibly preceded by a package name such as “Tuple<Int, String>”
or “ds.Stack<main.Person>”. For example,

package ds

object List< NTuple<key, String, value, Int>, ds.Map<String, main.Person> >

...

end

By the above rules, a prototype can be used as a real parameter if it is preceded by its package.
This demand is dropped in prototypes of package cyan.lang. Therefore if Person is in package main, a
prototype Stack<main.Person> should be declared as

package ds

object Stack<main.Person>

fun push: main.Person elem { ... }

fun pop -> main.Person { ... }

...

end

In this way the compiler knows whether an identifier that appears after < is a formal parameter or a real
parameter of a generic prototype with real parameters. If the parameter:

(a) is composed by a single identifier that starts with a lower-case letter it is a real parameter. See a
previous example of prototype ISingle with parameter write;

(b) is composed by a single identifier that starts with an upper-case letter and there is a prototype in
cyan.lang with this same name, then it is a real parameter;

(c) is composed by a single identifier that starts with an upper-case letter and there is no prototype in
cyan.lang with this same name, then it is a formal parameter;

(d) is qualified, with at least one “.” in it, then it is a real parameter;

(e) is a generic prototype instantiation, then it is a real parameter.

The non-generic version of a generic prototype is a completely independent prototype. It can have
different methods, inheritance, and so on. This feature is used to define a prototype Function<Boolean>

that represents a function that does not take parameters and return a Boolean. This kind of function
should support methods whileTrue: and whileFalse:
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var i = 0;

{ ^ i < 10 } whileTrue: {

i println;

++i

};

No other function prototype should have these methods.
A generic prototype with real parameters may be useful for providing a more efficient implementation

for a given type. For example, a Hashtable<Int, Int> implementation could somehow be more efficient
because Int´s are used.

7.2 Generic Prototype with a Varying Number of Parameters

Generic prototypes with a variable number of parameters are supported. They are declared by putting
a + after the generic parameter name:

object P<T+>

...

end

There should be just one formal parameter between “<” and “>”.
There is no way to use formal parameter like T using regular Cyan syntax. The only way of doing

that is through metaprogramming, using metaobjects (Chapter 5). For example, prototype Tuple could
have been declared as

package cyan.lang

public object Tuple<T+>

@createTuple

end

In an instantiation of Tuple, as Tuple<Int, String>, metaobject createTuple has access to the list
of real parameter, Int and String. Basead on these parameters, createTuple generates Cyan code
that replaces the metaobject call. That is, “@createTuple” is replaced by declarations of methods and
instance variables produced by createTuple. Currently Tuple is not declared in this way. But this will
soon change.

It is tempting to add language constructions to handle a variable number of real parameters. However,
that would be a mistake. The number of constructions needed to do something useful would be large.
Since this kind of feature will be rarely used, they are best left for metaobjects. It is important to
note that several library prototypes of Cyan are or will be implemented using generic prototypes with a
varying number of arguments: Tuple, Union, Function etc.

7.3 Multiple Parameter Lists

A generic prototype may have more than one <...> list. Inside each list, there may appear more than
one parameter as before.

package example

object Test<T1, T2><U1, U2>

end
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It is illegal to mix different kinds of parameters. All parameters should be one of the following:

(a) real parameters;

(b) formal parameters without a + operator;

(c) formal parameters with a + operator.

Then there are three possible ways of declaring a generic prototype:

package example

object Test<Int, Char><main.Person>

end

package example

object Test<T1, T2><U1, U2><R>

end

package example

object Test<T+><U+>

end

There will be a compile-time error if the different kinds of parameters are mixed as in

package example

object Test<T+><Int><U> // error

end

7.4 Source File Names

Cyan has rules for associating file names to prototypes. As seen, a public prototype P should be in a file
called “P.cyan”. A generic prototype with real parameters

package pack

object P<T1, T2, ... Tn>...<U1, U2, ... Um>

...

end

should be in a file
P(T1,T2,...Tn)...(U1,U2,...Um).cyan

There should be no space in the file name. For example, the source file below should be in file
“Test(Int,Char)(main.Person)”.

package example

object Test<Int, Char><main.Person>

end
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The generic prototype

package pack

object P<T1, T2, ... Tn>...<U1, U2, ... Um>

...

end

should be in file “P(n)...(m).cyan”. All parameters are formal ones.
The generic prototype

package pack

object P<T+>...<U+>

...

end

should be in file “P(1+)...(1+).cyan”.
As examples of declarations and file names, see the table.

P<Int, Char, main.Person> P(Int,Char,main.Person).cyan

P<R, S, T><U, V><W> P(3)(2)(1).cyan

P<T+> P(1+).cyan

P< Tuple<key, String, value, main.Person> > P(Tuple(key,String,value,main.Person)).cyan

ISingle<write> ISingle(write).cyan

7.5 Combining Generic Prototypes

A package may declare a non-generic prototype and several generic prototypes with the same name. A
generic prototype may have formal parameters, real parameters, or a varying number of parameters.
All source files should be in the same package directory which means the source file names are dif-
ferent. There is only one restriction on names: there cannot be a file name “P(n)...(m).cyan” and
“P(1+)...(1+).cyan” if the number of pairs “()” are equal.

With this last restriction, the prototypes are never confounded. Without it there would be an ambi-
guity in some cases. For example, if there exists

object P<T><U>

and
object P<T+><U+>

then an instantiation P<Int><Char> would be ambiguous. Any prototype could be used.
Suppose an imported package declares several prototypes with name P — at most one is non-generic

and the others are generic ones. When the compiler finds an instantiation
P<T1, ... Tn>...<U1, ... Um>

it tries to find a generic prototype P with real parameters that match exatly the parameters T1, ... Tn,
U1, ... Um. If one is not found, the compiler searches for a generic prototype whose number of parameters
in each <> list is equal to the instantiation. If none is found, it searches for a generic prototype P with
a variable number of parameters with the same number of <> lists as the instantiation. If no adequate
generic prototype is found, the compiler signals an error.

For example, suppose that the instantiation is
NTuple<key, Int, value, String>
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First the compiler searches for a prototype NTuple<key, Int, value, String> which should be in a
file

NTuple(key,Int,value,String).cyan

If this prototype does not exist, it searches for a generic prototype
NTuple<T1, T2, T3, T4>

with four formal parameters. This should be in a file
NTuple(4).cyan

If there is no such prototype, the compiler searches for NTuple<T+>

which should be in a file NTuple(1+).cyan. Note that there is either NTuple(4).cyan or NTuple(1+).cyan,
never both.

If the instantiation uses other instantiations the process is recursive. In
NTuple<key, Tuple<Array<Int>, Union<Int, Char>> >

the compiler searches for a prototype with this name which should be in file NTuple(key,Tuple(Array(Int),Union(Int,Char))).cyan

7.6 Future Enhacements

Cyan does not support generic methods. However, it is very probably it will do in the future. We then
give a first definition of this construct and show the characteristics it should have in the language.

A generic method is declared by putting the generic parameters after keyword fun as in

object MySet

public fun<T> T add: (T elem) { ... }

...

end

When the compiler finds a message send using add: of MySet, as in
p = MySet add: Person

it considers that the return value of add: has type equal to the type of the parameter, which is Person.
Then it checks whether p can receive a Person in an assignment.

The difference between using a generic method add: and declaring a method
fun add: (Any elem) -> Any

is that the compiler checks the relationships between the parameter and the return value. As another
example, a generic method

public fun<T> relate: (T first, T second)

demands that the arguments to the method be of the same compile-time type.
After the generic parameter there may be a type:
public fun<Printable T> T add: (T elem) { ... }

Then the real arguments to add: should have a static type that is subtype of Printable.
Again, it is important to say that generic methods are not adequately defined. The paragraphs above

just give an idea of what they can be.
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Chapter 8

Important Library Objects

This Chapter describes some important library objects of the Cyan basic library. All the objects described
here are automatically imported by any Cyan program. They are in a package called cyan.lang.

8.1 System

Prototype System has methods related to the runtime execution of the program. It is equivalent to the
System class of Java. Its methods are given below. Others will be added in due time.

// ends the program

fun exit

// ends the program with a return value

fun exit: (Int errorCode)

// runs the garbage collector

fun gc

// current time in milliseconds

fun currentTime -> Long

// prints the stack of called methods in the

// standard output

fun printMethodStack

8.2 Input and Output

Prototype In and Out are used for doing input and output in the standard devices, usually the keyboard
and the monitor.

public object In

fun readInt -> Int

fun readFloat -> Float

fun readDouble -> Double

fun readChar -> Char

fun readLine -> String

...

end

public object Out
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fun println: (Any)*

end

8.3 Tuples

A tuple is an object with methods for getting and setting a set of values of possibly different types. It
is a concept similar to records of Pascal or structs of C. A literal tuple is defined in Cyan between “[.”
and “.]” as in the example:

var t = [. name: "Lı́via", age: 4, hairColor: "Blond" .];

Out println: "name: #{t name} age: #{t age} hair color: #{t hairColor}";

This literal object has type NTuple<name, String, age, Int, hairColor, String>, described below.
There should be no space between the field name such as “name” and the symbol “:”.

A literal tuple may also have unnamed fields which are further referred as f1, f2, etc:

var t = [. "Lı́via", 4, "Blond" .];

Out println: "name: #{t f1} age: #{t f2} hair color: #{t f3}";

The type of this literal tuple is Tuple<String, Int, String>.
Object NTuple is a generic object with an even number of parameters. For each two parameters,

one describe the field name and the other its type. We will show only the NTuple object with four
parameters:

public object NTuple<F1, T1, F2, T2>

public fun init: (T1 g1, T2 g2) {

F1: g1;

F2: g2

}

public fun F1: (T1 g1) F2: (T2 g2) -> NTuple<F1, T1, F2, T2> {

// create a new object

var NTuple<F1, T1, F2, T2> t = self clone;

t F1: g1;

t F2: g2;

return t

}

@annot( #f1 ) public T1 F1

@annot( #f2 ) public T2 F2

public fun copyTo: (Any other) {

}

end

Metaobject @annot attaches to an instance variable, shared variable, method, prototype, or interface a
feature given by its parameter. This feature can be retrieved at runtime by a method of the introspective
library.

After compiling the above prototype, the compiler creates the following instance variables and meth-
ods:
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@annot( #f1 ) private T1 _F1

@annot( #f2 ) private T2 _F2

@annot( #f1 ) fun F1 -> T1 { ^ _F1 }

@annot( #f1 ) fun F1: (T1 newF1) { _F1 = newF1 }

@annot( #f2 ) fun F2 -> T2 { ^ _F2 }

@annot( #f2 ) fun F2: (T2 newF2) { _F2 = newF2 }

So we can use this object as in

var NTuple<name, String, age, Int> t;

t name: "Carolina" age: 1;

Out println: (t name);

t name: "Lı́via";

t age: 4;

Out println: "name: #{t name} age: #{t age}";

Every object NTuple has a method
copyTo: Any

that copies the tuple fields into fields of the same name of the parameter. For example, consider a book
object:

object Book

public String name

public Array<String> authorList

public String publisher

public String year

fun print {

Out println: (authorList[0] + " et al. "

Out println: name + ". Published by " + publisher + ". " + year;

}

end

...

// in some other object ...

var b = Book new;

var t = [. name: "Philosophiae Naturalis Principia Mathematica",

authorList: {# "Isaac Newton" #},

publisher: "Royal Society",

year: 1687

.];

t copyTo: b;

The last line copies the fields of the tuple into the object fields. That is, “name” of t is copied to “name”
of b and so on. The Book object may have more fields than the tuple. But if it has less fields, an exception
ExceptionCopyFailure is thrown. Note that copyTo: can be used to copy tuples to tuples:

var t = NTuple<name, String, age, Int>;

var maria = [. name: "Maria", age: 4, hairColor: "Blond" .];

maria copyTo: t;

Method copyTo: uses reflection in order to copy fields. Since public instance variables are not allowed
in Cyan, copyTo: uses the corresponding getters and setters to copy the values.

Method copyTo: creates new objects if any of the tuple fields is another tuple.
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object Manager

public Person person

public String company

end

object Person

public String name

public Int age

end

Manager should have a reference to another object, Person. When copying a tuple corresponding to a
manager, an object of Person should be created.

var manager = Manager new;

var john = [. person: [. name: "John", age: 28 .], company: "Cycorp" .];

john copyTo: manager;

Here copyTo: copies field company to object referenced by manager and creates an object of Person

making manager.person refer to it.1 After that copyTo: is called with the tuple
[. name: "John", age: 28 .]

and this new Person object. It is as if we had

var manager = Manager new;

var john = [. person: [. name: "John", age: 28 .], company: "Cycorp" .];

manager.person = Person new;

manager.person.name = "John";

manager.person.age = 28;

manager.company = "Cycorp";

Object Tuple is a generic object that takes any number of type parameters (up to 16). It is an
unnamed tuple whose elements are accessed by names fi. Then UTuple<T1, T2> is almost exactly the
same as

NTuple<f1, T1, f2, T2>.

In fact, this object is defined as

public object Tuple<T1, T2> extends NTuple<f1, T1, f2, T2>

end

An example of use of this object is

var Tuple<String, Int> t;

t f1: "Ade" f2: 23;

Out println: (t f1);

t f1: "Melissa";

t f2: 29;

Out println: "name: #{t f1} age: #{t f2}";

Object Tuple has a method copyTo: that copies the information of the tuple into a more meaningful
object. We will shown how it works using the book example. We want to copy a tuple of type

Tuple<String, Array<String>, String, Int>

into an object of Book. However, copyTo: has to know to which instance variable of Book it should copy

1In fact, it calls “manager person: (Person new)”.
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f1 of the tuple. This method cannot choose one instance variable based on the types — there are two of
them whose type is String. We should use annotations for that:

object Book

@annot( #f1 ) public String name

@annot( #f2 ) public Array<String> authorList

@annot( #f3 ) public String publisher

@annot( #f4 ) public String year

fun print {

Out println: (authorList[0] + " et al. "

Out println: name + ". Published by " + publisher + ". " + year;

}

end

Now the following code will work as expected.

var Tuple<String, Array<String>, String, Int> t;

var b = Book new;

t = [. "Philosophiae Naturalis Principia Mathematica",

{# "Isaac Newton" #},

"Royal Society",

1687

.];

t copyTo: b;

b print;

As with method copyTo: of NTuple, tuples inside tuples are copied recursively. The Manager example
with UTuples is

object Manager

@annot( #f1 ) public Person person

@annot( #f2 ) public String company

end

object Person

@annot( #f1 ) public String name

@annot( #f2 ) public Int age

end

...

var manager = Manager new;

var john = [. [. "John", 28 .], "Cycorp" .];

john copyTo: manager;

// john has the same values as in the example

// with NTuple

Method copyTo: can be used in grammar methods to store the single method argument into a
meaningful object:

object BuildBook

fun (bookname: String (author: String)* publisher: String year: Int)

Tuple< String, Array<String>, String, Int> t
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-> Book {

var book = Book new;

t copyTo: book;

return book

}

This method accepts as arguments all the important book information: name, authors, publisher, and
publication year:

var prin = BuildBook bookname: "Philosophiae Naturalis Principia Mathematica"

author: "Isaac Newton"

publisher: "Royal Society"

year: 1687;

An empty tuple is illegal:

var t = [. .]; // compile-time error: empty tuple

var anotherError = [..]; // unidentified symbol ’[..]’

8.4 Dynamic Tuples

Object DTuple is a dynamic tuple. When an object of DTuple is created, it has no fields. When a
dynamic message “#attr: value” is sent to the object, a field whose type is the same as value is
created. The value of this field can be retrieved by sending the message “#attr” to the object. See the
example:

var t = DTuple new;

t ?name: "Carolina";

// prints "Carolina"

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t age);

t ?age: 1;

// prints 1

Out println: (t ?age);

Object DTuple is the object

object DTuple mixin AddFieldDynamicallyMixin

end

Mixin AddFieldDynamicallyMixin redefines method doesNotUnderstand in such a way that a field is
added dynamically to objects of DTuple. When a non-existing method f: value is called on the object,
doesNotUnderstand of AddMethodDynamicallyMixin adds to the receiver a field _f and methods f: T

and T f. The methods set and get the field. T is the type of value.
Object DTuple has methods checkTypeOn and checkTypeOff that turn on and off (default) the type

checking with dynamic fields:

var t = DTuple new;

t ?name: "Carolina";

t ?name: 100; // ok, default off

t ?name: "Carolina"; // ok, default off
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t checkTypeOn;

// runtime type error here. name: should receive

// a string as argument

t ?name: 100;

Mixin AddFieldDynamicallyMixin has a method remove: that allows one to the remove a field from a
prototype:

var t = DTuple new;

t ?name: "Carolina";

t remove: ?name;

// runtime error in "(t name)"

Out println: (t ?name);

The mixin object AddFieldDynamicallyMixin is defined as

mixin(Any) object AddFieldDynamicallyMixin

fun doesNotUnderstand: (CySymbol methodName, Array<Any> args) {

if methodName indexOf: ’:’ == (methodName size) - 1 {

if args size != 1 {

super doesNotUnderstand: methodName, args

}

else {

// add field to table addedFieldsTable and add

// methods for getting and setting the field

...

}

}

}

fun remove: (CySymbol what) {

addedFieldsTable remove: what

}

Hashtable<CySymbol, Any> addedFieldsTable

end

8.5 Intervals

A interval is the return value of methods .. and ..< of the types Byte, Short, Int, Char, and Boolean.
Then if first and last are integers, first..last returns an interval with all integers numbers between
first and last, including this last one. And first..<last returns an interval with all integers between
first and last - 1 — it is equivalent to first..(last - 1). If last < first the return is a valid
interval but without elements.

var Interval<Int> I;

I = 3..5;

// this code prints numbers 0 1 2

0..2 foreach: { (: Int i :)

Out println: i

};

// this code prints numbers 3 4 5
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I repeat: { (: Int i :)

Out println: i

};

// prints the alphabet

’A’..’Z’ foreach: {

(: Char ch :)

Out println: ch

};

// false < true

false..true { (: Boolean b :)

b println

};

var anArray = {# 0, 1, 2, 3 #};

0..<anArray size foreach: { (: Int n :) n println };

Operator “..” has smaller precedence than the arithmetical operators and greater precedence than the
logical and comparison operators. So, the lines

i+1 .. size - 1 repeat: { ... }

if 1..n == anInterval { ... }

are equivalent to

((i+1) .. (size - 1)) repeat: { ... }

if (1..n) == anInterval { ... }

Prototype Interval is defined as follows. Generic parameter T can only be instantiated with types
Byte, Short, Int, Long, and Char. Metaobject firstBelongsTo checks that and issue an error if T is
not one of these types.

package cyan.lang

public object Interval<T> implements Iterable<T>

@firstBelongsTo(T, Byte, Short, Int, Char)

fun init: (T start, T theend) {

fun == (Any other) -> Boolean {

fun repeat: Function<Nil> b {

fun foreach: Function<T, Nil> b {

fun inject: (T initialValue)

fun to: (T max)

fun size -> Int { ^ 1 + (Int cast: (theend - start)) }

fun first -> T { ^start }

fun last -> T { ^theend }

fun apply: (String message) -> Dyn {

fun .* (String message) {

fun .+ (String message) -> Any {

private T start, theend

end

...
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// this is declared in cyan.lang

interface Iterable<T>

fun foreach: Function<T, Nil>

fun apply: (String message)

fun .* (String message)

fun .+ (String message) -> Any

end

abstract object InjectObject<T> extends Function<Nil>

abstract fun eval: T

abstract fun result -> T

end

Intervals can be used with method in: of the basic types:

var s String = "";

var Int age = In readInt;

if age in: 0..2 {

s = "baby"

}

else if age in: 3..12 {

s = "child"

}

else if age in: 13..19 {

s = "teenager"

}

else {

s = "adult"

}
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Chapter 9

Grammar Methods

Cyan supports an innovative way of declaring methods and sending messages: grammar methods and
grammar message sends. A grammar method is a method of the form

fun (regexpr) T v { ... }

in which regexpr is given as a regular expression that uses selectors, parameter types, and regular expres-
sion operators. There is only one parameter put after the regular expression. The parameter declaration
may appear around parenthesis:

fun (regexpr) (T v) { ... }

Let us introduce this concept in the simplest form: methods that accept a variable number of real
arguments. A method add: that accepts any number of real arguments that are subtypes of type T

should be declared as
fun (add: (T)+) (Array<T> v) { ... }

After fun the method keywords should be declared between parentheses. Assuming this method is in an
object MyCollection, it can be called as in

MyCollection add: t1;

MyCollection add: t1, t2, t3;

MyCollection add: t2, t1;

The + means one or more real arguments of type T or its subtypes. We could have used * instead to
mean “zero or more real arguments”. In this case, the call “MyCollection add: ;” would be legal. In
the call site, all real arguments are packed in an array of type T and then it is made a search for an
appropriate method add:. The formal parameter v of add: will refer to the array object with the real
arguments. The one formal parameter is declared after the parenthesis that closes the declaration of the
method signature, which is a regular expression.

The compiler groups all real arguments into one array that is then passed as parameter to the method.
It is as if we had

MyCollection add: {# t1, t2, t3 #}

in message send
MyCollection add: t1, t2, t3;

As another example, a method add: that accepts a variable number of integers as real parameters is
declared as

object IntSet

fun (add: (Int)*) (Array<Int> v) {

v foreach: { (: Int elem :)
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addElement: elem

}

}

fun addElement: Int elem {

...

}

...

end

What if instead of saying
IntSet add: 2, 3, 5, 7, 11;

we would like
IntSet add: 2 add: 3 add: 5 add: 7 add: 11;

? No problem. Just declare the method as

object IntSet

fun (add: Int)+ (Array<Int> v) {

v foreach: { (: Int elem :)

addElement: elem

}

}

fun addElement: Int elem {

...

}

...

end

Here we should use + because we cannot have zero “add: value” elements. Again, in a message send
IntSet add: 2, 3, 5, 7, 11

the compiler would group all arguments into one array: IntSet add: {# 2, 3, 5, 7, 11 #}

More than one keyword may be repeated as in

object StringHashtable

fun (key: String value: String)+

(Array<NTuple<key, String, value, String>> v) {

v foreach: { (: NTuple<key, String, value, String> pair :)

addKey: (pair key) withValue: (pair value)

}

}

fun addKey: (String k) withValue: (String v) {

...

}

...

end

Part “key: String, value: String” is represented by NTuple<key, String, value, String> — see
Chapter 8 for the description of object NTuple. Since there is a plus sign after this part, the whole
method takes a parameter of type

Array<NTuple<key, String, value, String>>
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9.1 Matching Message Sends with Methods

The grammar method of StringHashtable defined in the last section can be called by supplying a
sequence of key:value: pairs:

var StringHashtable ht;

ht = StringHashtable new;

ht key: "John" value: "Professor"

key: "Mary" value: "manager"

key: "Peter" value: "designer";

The last message send would be transformed by the compiler into something like

ht key:value: {#

[. "John", "Professor" .],

[. "Mary", "manager" .],

[. "Peter", "designer" .]

#};

This is not valid Cyan syntax: although the object passed as parameter is legal, the selector key:value:
is illegal.

When the compiler reaches the last message send of this example, it makes a search in the declared
type of ht, StringHashtable, for a method that matches the message pattern. This matching is made
between the message send and an automaton built with the grammar method. It is always possible to
create an automaton from a grammar method since the last one is given by a regular expression. To
every regular expression there is an automaton that recognizes the same language.

The compiler may implement the checking of a message send, the search for a method that correspond
to it, in the following way:

(a) every prototype has an automaton for method search. There is just one automaton for every proto-
type;

(b) the automaton of a prototype has many final states. At least one for every method, including the
inherited ones. And a state without outgoing arrows (transitions) meaning “there is no method for
this message”;

(c) when the compiler finds a message send
“expr s1: p11, p12, ... sk: pk1, pk2, ... pkm”
it gives this message as input to the automaton of the prototype or interface T, which is the static
type of expr. If a final state is reached, there is a method in T that correspond to this message
send. Each final state is associated to a method (including the inherited ones). The no final state is
reached, there is no method for this message and the compiler signs an error.

A regular expression is transformed into a non-deterministic automaton which adds ambiguity to
message sends in Cyan. For example, consider a method declared as

object A

fun ( (a: Int)* (a: Int)* )

(Tuple<Array<Int>, Array<Int>> t) { ... }

end

A message send
A a: 0 a: 1

can be interpreted in several different ways:
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(a) a: 0 a: 1 refer to the first selector of the method. No argument is passed to the second selector.
Then “t f1” is an array with two integers, 0 and 1 and “t f2” is an array with zero elements;

(b) “t f1” has one element and “t f2” has one too;

(c) “t f1” has zero elements and “t f2” has two integers.

To eliminate ambiguity, Cyan demands that every part of the regular expression of the method matches
as much of the message as possible. Therefore the first way shown above will be the chosen by the
compiler. Array “t f2” will always have zero elements.

This requirement of “match as much as possible” can be explained using regular expressions. A
regular expression a*a matches a sequence of a´s followed by an “a”. However, a string

aaaaa

will be matched by the first part of the regular expression, a*, without using the last “a” (this is true if
we demand “match as much of the input as possible”). Therefore it will not match the regular expression
a*a because the last “a” will not match any symbol of the input. Conclusion: you should not use a
symbol like a that is matched by the previous part of the regular expression.

This requirement of “match as much as possible” is necessary to remove ambiguity and to make things
work as expected. For example, a regular expression “a*b” (without the quotes) should match the string

aab

However, this regular expression is transformed into a non-deterministic automaton which can try to
recognize its input in several different ways. One of them is to match the first “a” of the input string
with the part a* of the regular expression, leaving the rest of the string, “ab” to be matched with the rest
of the regular expression, “b”. There will be no match and the match fails, demanding a backtracking
that would not be necessary if we had used the requirement “match as much of the input string as
possible”.

For the time being, it is not possible to override grammar methods in sub-objects. That is, if a gram-
mar method of a superobject accepts a message M (considered as input to the automaton corresponding
to the method), then no sub-object method can accept M. Then the following code is illegal:

object MyHash extends StringHashtable

fun key: (String k) value: (String v) {

...

}

end

A message send
MyHash key: "University" value: "UFSCar"

matches the method defined in MyHash and the grammar method of StringHashtable.
To avoid matching to selectors init: and new:, these two selectors are not allowed in grammar

methods.

9.2 The Type of the Parameter

When the compiler finds the message send that is the last statement of

var StringHashtable ht;

ht = StringHashtable new;

ht key: "John" value: "Professor"

key: "Mary" value: "manager"

key: "Joseph" value: "designer";
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it creates a single object of type
Array<NTuple<key, String, value, String>>

because this is the type of the parameter of the method that matches the pattern of this message send.
It knows that three tuple objects should be added to the array and that every tuple should be initialized
with the objects following key: and value:.

Using tuples and arrays to compose the type of the parameter of a grammar method is not generally
meaningful. We can use more appropriate objects for that. As an example, the type of the key:value:

method of StringHashtable can be changed to

object StringHashtable

fun (key: String value: String)+ (Array<KeyValue> v) {

v foreach: { (: KeyValue pair :)

addKey: (pair key) withValue: (pair value)

}

}

fun addKey: (String k) withValue: (String v) {

...

}

...

end

Here KeyValue is declared as

object KeyValue

@annot( #f1 ) public String key

@annot( #f2 ) public String value

end

The compiler creates and adds to this object the following methods:

@annot( #f1 ) fun key: (String newKey) { _key = newKey }

@annot( #f1 ) fun key -> String { ^ _key }

@annot( #f2 ) fun value: (String newValue) { _value = newValue }

@annot( #f2 ) fun value -> String { ^ _value }

In a message send like

StringHashtable

key: "John" value: "Professor"

key: "Mary" value: "manager"

key: "Joseph" value: "designer";

the compiler knows how to pack each group “key: string value: string” because of the annotations
#f1 and #f2 in object KeyValue.

It is possible to declare a grammar method without given explicitly the type of the sole parameter:

object StringHashtable

fun (key: String value: String)+ v {

v foreach: { (: Tuple<String, String> pair :)

addKey: (pair f1) withValue: (pair f2)

}

}

fun addKey: (String k) withValue: (String v) {
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...

}

...

end

In this case, the compiler will deduce a type for the parameter. It will always use either an array or an
unnamed tuple. The type of v will be

Array< Tuple<String, String> >

The Cyan compiler will initially only support this form of declaration. See Chapter 8 for the description
of object Tuple.

It is possible to declare a selector in a method without any parameters:

object MyFile

fun open: (String name) read: { ... }

fun open: (String name) write: { ... }

...

end

Here both methods start with open: but they are easily differentiated by the second keyword, which
does not take any parameters. This object can be used in the following way:

var in = MyFile new;

var out = MyFile new;

in open: "address.txt" read: ;

out open: "newAddress.txt" write: ;

...

9.3 Unions and Optional Selectors

Unions are used to compose the type of the parameter of grammar methods that use the regular operator
“|”. The signature “A | B” means A or B (one of them but not both).

object EnergyStore

fun (add: (wattHour: Float | calorie: Float | joule: Float))

(NTuple< add, Any, energy, Union<wattHour, Float, calorie, Float, joule,

Float> > t) {

var u = t energy;

u

wattHour: {

// here u is a Float

amount = amount + u*3600

}

calorie: {

// here u is a Float

amount = amount + u*4.1868

joule: {

// here u is a Float

amount = amount + u;

}

160



}

// keeps the amount of energy in joules

Float amount

...

end

Any is the type associated to selectors without parameters such as add: of this example. Hence
“NTuple<add, Any, ...>”. We can use this prototype as

EnergyStore add: wattHour: 100.0;

EnergyStore add: calorie: 12000.0;

EnergyStore add: joule: 3200.67;

The optional selectors may be repeated as indicated by the “+” in the method declaration:

object EnergyStore

fun ( add: (wattHour: Float | calorie: Float | joule: Float)+ )

(NTuple< add, Any, energyArray,

Array<Union<wattHour, Float, calorie, Float, joule, Float>> > t) {

var v = t energyArray;

v foreach: { (: Union<wattHour, Float, calorie, Float, joule, Float>> u :)

u

wattHour: {

// here u is a Float

amount = amount + u*3600

}

calorie: {

// here u is a Float

amount = amount + u*4.1868

}

joule: {

// here u is a Float

amount = amount + u;

}

}

}

// keeps the amount of energy in joules

Float amount

...

end

Now we can write things like

EnergyStore add:

wattHour: 100.0

calorie: 12000.0

wattHour: 355.0

joule: 3200.67

calorie: 8777.0;
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This is a single method call.
As another example, we can rewrite the MyFile object as

object MyFile

fun ( open: (String name) (read: | write:) )

(NTuple<open, Any, name, String, access, Union<read, Any, write, Any>> t)

{

var u = t access;

u

read: {

// open the file for reading

...

}

write: {

// open the file for writing

...

};

...

}

...

end

Optional parts should be enclosed by parentheses and followed by “?”, as in

object Person

fun ( name: String

(age: Int)? )

(NTuple<name, String, age, Union<none, Any, age, Int>> t) {

_name = t name;

var u = t age;

u

none: {

_age = -1

}

age: {

// u has type Int here

_age = u

}

}

...

String _name

Int _age

end

...

var p = Person new;

p name: "Peter" age: 14;

var c = Person new;

// ok, no age

c name: "Carolina";
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...

Here it was necessary to use “age as the name of the second field of the tuple and also as the name of
the union. The name of the tuple field should be age and it seems that is no better name for the union
field than age too.

In a grammar method, it is possible to use more than one type between parentheses separated by
“|”:

object Printer

fun (print: (Int | String)*) (Array<Union<Int, String>> v) {

v foreach: { (: Union<Int, String> elem :)

elem

unionCase: Int do: {

// elem has type Int here

printInt: elem

}

unionCase: String do: {

// elem has type String here

printString: elem

};

}

}

// definitions of printInt and printString

...

end

This method could be used as in
Printer print: 1, 2, "one", 3, "two", "three", "four", 5;

There is an ambiguity if, when putting alternative types, one of them inherits from the other. For
example, suppose Manager inherits from Worker and there is an object with a method that can accept
both a manager and a worker.

object Club

fun (addMember: (Manager | Worker)*) (Array<Union<Manager, Worker>> v) {

...

}

...

end

A code
Club addMember: Manager;

is ambiguous because Manager can be given as the first or second field of Union<Manager, Worker>. To
eliminate this ambiguity, Cyan will use the first field that is a supertype of the runtime type of the object
that is parameter.

More clearly, suppose an objet whose runtime type is S is passed as parameter to a method
fun (m: T1 | T2 | ... | Tn) (Union<T1, T2, ..., Tn> u) { ... }

The runtime system (RTS) will test whether S is a subtype of T1, T2, and so on, in this order. If S is sub-
type of Ti and it is not a subtype of Tj for j < i, the RTS creates an object of Union<T1, T2, ..., Tn>
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packing the parameter as field i.
There is also an ambiguity in methods with alternative selectors such as

object Company

fun (addMember: Manager | addMember: Worker)+ (Array<Union<Manager, Worker>> v) {

...

}

...

end

The treatment is exactly the same as with union prototypes. The first adequate selector/type combination
is used.

9.4 Refining the Definition of Grammar Methods

A grammar method should have a single parameter and it is not necessary to give its type. In the last
case, the compiler will associate a type to this parameter to you. To discover this type, the compiler
associates a type for each part of the method declaration. The composition of these types gives the type
of the single grammar method parameter.

The following table gives the association of rules with types. T1, T2, ..., Tn are types and R is part of
the signature of the grammar method. For example, R can be

add:

add: Int

at: Int put: String

add: Int | sub: Int

(add: Int)*

Whenever there is a list of R´s, assume that the types associated to them are T1, T2, and so on. For
example, in a list R R R, assume that the types associated to the three R´s are T1, T2, and T3, respectively.
We used typeof(S) for the type associated, by this same table, to the grammar element S.

rule type

T1 T1

R R ... R Tuple<T1, T2, ..., Tn>

Id “:” Any

Id “:” T T, which must be a type

Id “:” “(” T “)” “∗” Array<T>

Id “:” “(” T “)” “+” Array<T>

“(” R “)” typeof(R)

“(” R “)” “∗” Array<typeof(R)>

“(” R “)” “+” Array<typeof(R)>

“(” R “)” “?” Union<typeof(R)>

T1 “|” T2 “|” ... “|” Tn Union<f1, T1, f2, T2, ..., fn, Tn>

R “|” R “|” ... “|” R Union<f1, T1, f2, T2, ..., fn, Tn>

We will give now the precise definition of the type of a grammar method based on the grammar of
it. It will be used “typeof(P)” for the type associated to the grammar production P.

The productions will be divided in cases.
SelectorGrammar ::= “(” SelectorUnitSeq “)” [ “∗” | “+” ]
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In this case, typeof(SelectorGrammar) = Array<typeof(SelectorUnitSeq)>

SelectorGrammar ::= “(” SelectorUnitSeq “)” [ “?” ]
Now typeof(SelectorGrammar) = Union<missing, Any, present, typeof(SelectorUnitSeq)>

SelectorUnitSeq ::= SelectorUnit { SelectorUnit }
typeof(SelectorUnitSeq) = Tuple<typeof(SelectorUnit1), ..., typeof(SelectorUnitn)>

in which typeof(SelectorUniti) is the ith production.
SelectorUnitSeq ::= SelectorUnit { “|” SelectorUnit }

typeof(SelectorUnitSeq) = Union<f1, typeof(SelectorUnit1), ...,

fn, typeof(SelectorUnitn)>

in which typeof(SelectorUniti) is the ith production.
SelectorUnit ::= SelecGrammarElem
typeof(SelectorUnit) = typeof(SelecGrammarElem)

SelectorUnit ::= SelectorGrammar
typeof(SelectorUnit) = typeof(SelectorGrammar)

SelecGrammarElem ::= IdColon
typeof(SelecGrammarElem) = Any

SelecGrammarElem ::= IdColon TypeList
typeof(SelecGrammarElem) = typeof(TypeList)

SelecGrammarElem ::= IdColon “(” Type “)” ( “∗” | “+” )
typeof(SelecGrammarElem) = Array<typeof(Type)>

TypeList ::= Type { “,” Type }
typeof(TypeList) = Tuple<Type1, Type2, ..., Typen>

Let us see some examples of associations of signatures of grammar methods with types:

Int Int

add: Int Int

add: Int, String Tuple<Int, String>

add: (Int)* Array<Int>

add: (Int)+ Array<Int>

(add: Int)* Array<Int>

(add: Int)+ Array<Int>

(add: Int | String) Union<Int, String>

(add: (Int | String)+) Array<Union<Int, String>>

(add: Int | add: String) Union<Int, String>

key: Int value: Float Tuple<Int, Float>

nameList: (String)* (size: Int)? Tuple<Array<String>, Union<Int>>

coke: Any

coke: | guarana: Union<Any, Any>

(coke: | guarana:)* Array<Union<Any, Any>>

(coke: | guarana:)+ Array<Union<Any, Any>>

((coke: | guarana:)+)? Union<Array<Union<Any, Any>>>

((coke: | guarana:)?)+ Array<Union<Union<Any, Any>>>

amount: (gas: Float | alcohol: Float) Tuple<Any, Union<Float, Float>>

By the above grammar, it is possible to have a method
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fun (format: (String form) print: (String s))

(Tuple<String, String> t) {

...

}

which starts with “(” (after keyword fun) but which does not use any regular expression operator. This
is legal. As usual, all the parameter are grouped into a one, a tuple, declared as the single parameter.

Conceptually, every Cyan method takes a single parameter whose type is given by the associations of
the above table. For example a method

fun at: (Int x, y) print: (String s) { ... }

conceptually takes a single parameter of type Tuple< Tuple<Int, Int>, String >.
The method name of a grammar method is obtained by removing the spaces, parameter declaration,

and types from the method. Then, the method names of

fun ( add: (wattHour: Float | calorie: Float | joule: Float)+ )

(NTuple< add, Any, energyArray, Array<NUnion<wattHour, Float, calorie,

Float, joule, Float>> > t)

fun ( name: String

(age: Int)? )

(NTuple<name, String, age, NUnion<age, Int>> t) {

are

(add:(wattHour:|calorie:|joule:)+)

(name:(age:)?)

9.5 Context-Free Languages

Although regular expressions are used to define grammar methods, some context-free languages can be
incorporated into a grammar method with the help of parentheses. Let us see an example. The grammar
below uses { and } to means repetition of zero ou more times and anything between quotes is a terminal.
Then EList derives zero or more E´s.

L ::= "(" EList ")"

EList ::= { E }

E ::= L | N

N ::= a integer number

This represents a Lisp-like list of integers:
() (0 1) ( (0 1) (2) )

This grammar is not regular and cannot be converted into a regular grammar. There is no regular
expression whose associated language is the same as the language generated by this grammar. The
problem here is that L is defined in terms of EList, which is defined in terms of E, which is defined in
terms of L and N. Therefore, L is defined in terms of itself. There is no way of removing this self reference:
no grammar method will be able to represent this grammar. However, assuming prototype List keeps
a list of integers, this grammar is representable through a grammar method. It is only necessary that
some methods return a List object.

object List

public Int value
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public List next

end

object GenList

fun (L: (List | Int)* ) (Array<Union<List, Int>> t) -> List {

// here parameter t is converted into a list object

...

}

end

We will just have to use parentheses to delimit the construction of a list in terms of another list. Here
the arguments that follow L: should be integers or objects of List (produced by any means, including
by the return value of another call to this method). Therefore lists ( 1, 2, 3 ) and

( 1, (2, 3), 4)

are produced by

var a = GenList L: 1, 2, 3;

var b = GenList L: 1, (GenList L: 2, 3), 4;

init or new methods cannot be grammar methods — that could change, since there is no technical reason
they should not. The prohibition if because the introduction of this feature would make the language
more complex. If at least init or new methods could accept a variable number of parameters, we could
have a code like

var b = List(1, List(2, 3), 3)

to create the list (1, (2, 3), 4). That would be much better than the previous example.
It is expected that there will be a prototype CyanCode capable of generating the whole of Cyan

grammar. The grammar methods of CyanCode would return objects of the Abstract Syntax Tree of
Cyan. These objects could be used in the reflection library (metaobjects of compile and runtime). In this
way, meta-programming would be rather independent from a particular AST. That is, the AST would
exist but the meta-programmer would not manipulate it directly.

We will show one more example on how to implement a context-free grammar (CFG) that is not
regular (RG) using grammar methods. A CFG that is not regular defines some non-terminal (also called
“variable”) in terms of itself. This necessarily happens. It it does not, there is a regular expression that
produces the same language as the CFG.

The non-terminal defined in terms of itself should be associated to one grammar method that returns
an object representing that non-terminal. For example, if the non-terminal is S and there is a prototype
SObj that represents the non-terminal S, then the grammar method for S should return an object of
SObj (which is the prototype of the Abstract Syntax Tree that keeps the data associated to S). Now any
references to S in the grammar method should be replaced by a parameter of type SObj. Let us study
the example below.

Suppose S is defined in terms of A which is defined in terms of S:

S ::= N A | C B

A ::= N S | C

B ::= N A | C

N ::= a number

C ::= a char

It is always possible to change the grammar (preserving the language it generates) in such a way that
S is defined in terms of S and A in terms of S:
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S ::= N N S | N C | C

A ::= N S | C

B ::= N A | C

N ::= a number

C ::= a char

Then we proceed as before to implement this grammar, using first:, second:, and third: to
differentiate the grammar rules used in a message send. In A ::= X | Y, the associated grammar method
is

fun (A: (first: X | second: Y)) t { }

in which the grammar rule, A:, is used as a selector.
The implementation of the grammar above follows.

object S ... end

object GenS

fun ( S: (first: Int, Int, S | second: Int, Char | third: Char) ) t -> S { ... }

fun ( A: (first: Int, S | Char) ) t -> A { ... }

fun ( B: (first: Int, A | second: Char) ) t -> B { ... }

end

A string
0 1 2 ’A’

can be derived from the grammar through the derivations
S =⇒ N N S =⇒ N N N C

∗
=⇒ 0 1 2 ’A’

The string 0 1 2 ’A’ can be given as input to GenS through the message sends
GenS S: first: 0, 1, (GenS S: second: 2, ’A’);

It is very important to note that there is an interplay between grammar terminals and Cyan literals.
Here N means “any number” in the grammar. In the grammar method, we use Int in place of N, which
matches a literal number of Cyan such as 0, 1, and 2. The same happens with Char and C. Therefore we
assumed that integers in Cyan are the same thing as integers in this grammar.

9.6 Default Parameter Value

Grammar methods can be used to implement default values for parameters. One should use
selector: T = defaultValue

for a parameter of type T following selector: that has a default value defaultValue. A grammar
method with at least one parameter with default value cannot use the regular operators + and *.

object Window

fun (create: x1: Int

y1: Int

(width: Int = 300)?

(height: Int = 100)?

(color: Int = CyanColor)?

) t {

...

}

...

public const Int Cyan = 00ffffHex
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end

When the calling code do not supply the width, height, or color, the compiler initialize the parameter t

with the values given in the declaration:

// this call is the same as

// Window create: x1: 0 y1: 0 width: 300 height: 150 color: CyanColor;

var w = Window create: x1: 0 y1: 0 height: 150;

// this call is the same as

// Window create: x1: 0 y1: 0 width: 300 height: 100 color: 0000ffHex;

var p = Window create: x1: 100 y1: 200 color: 0000ffHex;

Currently, there is one limitation in the use of default parameters: inside the optional part in the
declaration of the grammar method, there should be only one parameter and one selector. Therefore it
is illegal to declare

object Window

fun (create: x1: (Int aX1)

y1: (Int aY1)

// error: two selectors

(width: Int = 300 height: Int = 100)?

// error: three parameters

(rgbcolor: Int = 0, Int = 255, Int 255)?

) t {

...

}

...

end

Note that one can declare default parameters using “or” as in

object EnergySpending

fun (add: (wattHour: Float (hours: Int = 1)? ) |

(calorie: Float (amount: Int = 1)? ) |

(joule: Float (amount: Int = 1)? ) )

) t {

...

}

...

end

A future improvement (or not ...) of the language would be to allow named parameters in grammar
methods that do not use “|”, “*”, or “+” in their definitions and that have default values for parameters
inside optional expressions (with “?”). So it would be legal to declare

object Window

fun (create: x1: (Int aX1)

y1: (Int aY1)

(width: Int aWidth = 300)?

(height: Int aHeight = 100)?

(color: Int aColor = Cyan)?
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) {

x1 = aX1;

y1 = aY1;

width = aWidth;

height = aHeight;

color = aColor;

}

...

Int x1, y1

Int width

Int height

Int color

public const Int Cyan = 00ffffHex

end

This would make it easy to access the parameters with default values.

9.7 Domain Specific Languages

Grammar methods make it easy to implement domain specific languages (DSL). A small DSL can be
implemented in Cyan in a fraction of the time it would take in other languages. The reasons for this
efficiency are:

(a) the lexical analysis of the DSL is implemented using grammar methods is the same as that of Cyan;

(b) the syntactical analysis of the DSL is given by a regular expression, the signature of the grammar
method, and that is easy to create;

(c) the program of the DSL is a grammar message send. The Abstract Syntax Tree (AST) of such a
program is automatically built by the compiler. The tree is composed by tuples, unions, arrays, and
prototypes that appear in the definition of the grammar method. The single method parameter refer
to the top-level object of the tree;

(d) code generation for the DSL is made by interpreting the AST referenced by the single grammar
method parameter. Code generation using AST´s is usually nicely organized with code for different
structures or commands being generated by clearly separated parts of the compiler;

(e) it is relatively easy to replace the type of the single parameter of a grammar method by a very
meaningful type of the AST. So, instead of using

Array<Tuple<Int, Int>>

one could use
Graph

in which Graph is a prototype with appropriate methods.

To further exemplify grammar methods, we will give more examples of them.

object Edge

@annot( #f1 ) public Int from

@annot( #f2 ) public Int to

end
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object Graph

@annot( #f1 ) public Int numVertices Int

@annot( #f2 ) public Int edgeArray Array<Edge>

end

object MakeGraph

fun ( numVertices: Int (edge: Int, Int)* ) (Graph t) -> Graph {

^t

}

end

A call

var g = MakeGraph numVertices: 5

edge: 1, 4

edge: 3, 1

edge: 1, 2

edge: 2, 4;

would produce and return an object of type Graph properly initialized. Note that the grammar method
of MakeGraph just return the method argument. This is a simple trick to produce an AST from a message
send.

A small language with an if, list of commands (cl), assignment, while, and print statements is
implemented by the following grammar methods:

object GP

fun (if: Expr then: Stat (else: Stat)? |

cl: (Stat)* |

assign: String, (Expr | String | Int) |

while: (Expr | String | Int) do: Stat |

print: (Expr | String | Int)

) t

-> Stat {

// code to convert t into an AST object

}

fun (add: (Expr | String | Int), (Expr | String | Int) |

mult: (Expr | String | Int), (Expr | String | Int)|

lessThan: (Expr | String | Int), (Expr | String | Int)) t

-> Expr {

// code to convert t into an AST object

}

end

It is assumed that variables in this language are automatically declared when used. Program

i = 0;

soma = 0;

while ( i < 10 ) {

soma = soma + i;

i = i + 1;

};

print soma
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is represented by the following message send:

var program = GP cl:

(GP assign: "i", 1),

(GP assign: "soma", 0),

(GP while: (GP lessThan: "i", 10)

do: (GP cl: (GP assign: "soma", (GP add: "soma", "i") ),

(GP assign: "i", (GP add: "i", 1) )));

program run: Hashtable();

The last message send would call a method to execute the program. Assume there is an abstract prototype
Stat with sub-prototypes IfStat, StatList, AssigStat, and WhileStat. Each one of them has a run

method that takes a hashtable as parameter. This hashtable holds the variables names and values. As
an example, prototype IfStat would be as follows.

object IfStat extends Stat

fun run: (Hashtable h) {

// if variable is not in the table

// it is inserted there

h key: variable value: (expr run: h)

}

@annot( #f1 ) public String variable

@annot( #f2 ) public Expr expr

end

Of course, the methods of prototype GP could just return the parameter as the Graph prototype if Stat,
Expr, and other prototypes of the AST are properly annotated.

The possibilities of defining DSL´s with grammar methods are endless. For example, one can define
a grammar method for creating XML files:

var String xmlText = XMLBuilder root: "booklist"

elem: "book" contain: (XMLElem elem: "author" contain: "Isaac Newton"),

(XMLElem elem: "title" contain: "Philosophiae Naturalis

Principia Mathematica"),

(XMLElem elem: "year" contain: "1687")

elem: "book" contain: (XMLElem elem: "author" contain: "Johann Carl Friedrich Gauss

"),

(XMLElem elem: "title" contain: "Disquisitiones Arithmeticae"),

(XMLElem elem: "year" contain: "1801");

This method call would return the string

<booklist>

<book>

<author> Isaac Newton </author>

<title> Philosophiae Naturalis Principia Mathematica </title>

<year> 1687 </year>

</book>

<book>

<author> Johann Carl Friedrich Gauss </author>

<title> Disquisitiones Arithmeticae </title>

<year> 1801 </year>
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</book>

</booklist>

SQL queries could also easily be given as calls to grammar methods. Any syntax error would be
discovered at compile-time. Horita [?] has designed a set of grammar methods for building graphical
user interfaces. There are methods for building menus, buttons, etc. It is much easier to use grammar
methods for GUI than to compose them by explicitly creating objects and calling methods. A similar
approach for building user interfaces is taken by the SwingBuilder of language Groovy (page 132 of
[Dea10]). Groovy builders are commented in Section 9.8.

Flower [flo12] gives an example of a DSL used to control a camera which is in fact a window of
visibility over a larger image. As an example, we can have a 1600x900 image but only 200x100 pixels can
be seen at a time (this is the camera size). Initially the “camera” shows part of the image and a program
in the DSL moves the camera around the larger image, showing other parts of it. The DSL grammar is

<Program> ::= <CameraSize> <CameraPosition> <CommandList>

<CameraSize> ::= "set" "camera" "size" ":" <number> "by" <number> "pixels" "."

<CameraPosition> ::= "set" "camera" "position" ":" <number> "," <number> "."

<CommandList> ::= <Command>+

<Command> ::= "move" <number> "pixels" <Direction> "."

<Direction> ::= "up" | "down" | "left" | "right"

CameraSize is the size of the window visibility of the camera. CameraPosition is the initial position of
the camera in the larger image (lower left point of the window). CommandList is a sequence of commands
that moves the camera around the larger image. The site [flo12] shows an annimation of this.

A grammar method implementing the above grammar is very easy to do:

object Camera

fun (sizeHoriz: Int sizeVert: Int

positionX: Int positionY: Int

(move: Int (up: | down: | left: | right:) )+ ) t {

// here comes the commands to actually change the camera position

}

end

This method could be used as

Camera sizeHoriz: 1600 sizeVert: 900

positionX: 0 positionY: 0

move: 100 up:

move: 200 right:

move: 500 up:

move: 150 left:

move: 200 down;

It takes seconds, not minutes, to codify the signature of this grammar method given the grammar of the
DSL. Other easy-to-do examples are a Turing machine and a Finite State Machine.

A future work is to design a library of grammar methods for paralel programming that would imple-
ment some commom paralel patterns. We could have calls like:

Process par: { Out println: 0 }, { Out println: 1 }

seq: { Out println: 2 }, { Out println: 3 }

par: (Graphics getMethod: "convert"), (Printer getMethod: "print");
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Functions after par: would be executed in any paralel. Functions after seq: would be executed in the
order they appear in the message send. Then 1 may appear before 0 in the output. But 2 will always
come before 3. Remember methods are u-functions.

9.8 Groovy Builders

The excelent language Groovy [Dea10] supports a feature called “builders” that makes it easy to construct
domain specific languages or tree-like structures. It would be very nice if Cyan had something similar. We
tried to add an equivalent feature without introducing new language constructs. That was not possible.
However, it is possible to define builders using dynamically typed message sends. To generate a html
page, one can write in Groovy [Dea10]:

def html = new groovy.xml.MarkupBuilder()

html.html {

head {

title "Groovy Builders"

}

body {

h1 "Groovy Builders are cool!"

}

}

In Cyan, one could design a MarkupBuilder prototype that plays a rôle similar to the Groovy class:

var b = MarkupBuilder new;

b html: {

b head: {

b title: "Groovy Builders"

};

b body: {

b h1: "Groovy Builders are cool!"

}

};

However, it is undeniable that the Groovy code is more elegant. The Cyan code does not look like a
tree-like structure as the Groovy code because it is necessary to send messages to the b variable.

Context functions (Section 10.11) can be used to make Cyan more Groovy-like:

var b = MarkupBuilder new;

b html: {

(: MarkupBuilder self :)

head: {

(: HeadBuilder self :)

title: "Groovy Builders"

};

body: {

(: BodyBuilder self :)

h1: "Groovy Builders are cool!"

}

};
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Prototype MarkupBuilder defines methods html:, head:, and body:. Method html calls the context
function after initializing self to its own self (which is b). Then the call to head: is in fact “b head:

...” (idem for body:). Method head: of MarkupBuilder accepts a context function as parameter and
sets the self of this context function to an object of prototype HeadBuilder. This prototype defines
a method title:. Idem for h1: of BodyBuilder. An alternative implementation would use prototype
MarkupBuilder in place of HeadBuilder and BodyBuilder. In this case, the code above would be almost
equal to the Groovy code:

var b = MarkupBuilder new;

b html: {

(: MarkupBuilder self :)

head: {

title: "Groovy Builders"

};

body: {

h1: "Groovy Builders are cool!"

}

};

This Groovy-like Builder implementation in Cyan has the advantage of being compile-time checked.
Any mistakes in the tree building would be caught by the compiler:

var b = MarkupBuilder new;

b html: {

(: MarkupBuilder self :)

head: {

(: HeadBuilder self :)

// compile-time error

// a HeadBuilder don´t have a

// method h1:

h1: "Groovy Builders are cool!"

};

body: {

(: BodyBuilder self :)

// compile-time error

// a BodyBuilder don´t have a

// method title:

title: "Groovy Builders"

}

};

One can define a method sendToReceiver in prototype Builder to make it easy to call methods
of this prototype using a function. This method instantiates a context-object parameter with self. It
should be declared as:

fun sendToReceiver: (ContextFunction<Builder, Nil> b) {

var Function<Nil> function = b bindToFunction: self;

function eval;

}

This method can be used to simulate Groovy builders.
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var b = Builder new;

b sendToReceiver: { (: Builder self :)

book: {

author: {

firstName: "Isaac";

surname: "Newton";

};

title: "Philosophiae Naturalis Principia Mathematica"

}

};

The compiler would check whether the message sends to self inside this context function refer to methods
declared in prototype Builder. Then book: Function<Nil>, author: Function<Nil>, and so on
should be methods of Builder.

Language Ruby has a method that plays the same rôle as sendToReceiver. It is instance_exec.
In Cyan methods and fields can be added to objects (Section 8.4). Using this feature, a prototype

Builder could allow the definition of tree-like structure whose node names are not defined at compile-
time. That would be very useful for defining a XML builder for example.

var XMLBuilder xml;

xml sendToReceiver: {

(: XMLBuilder self :)

root: "booklist";

?book:

?author: "Isaac Newton"

?title: "Philosophiae Naturalis Principia Mathematica"

?year: "1687";

?book:

?author: "Johann Carl Friedrich Gauss"

?title: "Disquisitiones Arithmeticae"

?year: "1801";

This method call would build a XML code in the form of an abstract syntax tree (AST), which is an
internal representation of the XML code. When a message “asString” is sent to the xml variable, the
string returned would be

<booklist>

<book>

<author> Isaac Newton </author>

<title> Philosophiae Naturalis Principia Mathematica </title>

<year> 1687 </year>

</book>

<book>

<author> Johann Carl Friedrich Gauss </author>

<title> Disquisitiones Arithmeticae </title>

<year> 1801 </year>

</book>

</booklist>

The only method XMLBuilder has is root (plus possible some auxiliary methods). When message
?book: ?author: ... ?title: ... ?year
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is sent to xml, method doesNotUnderstand create objects to represent the XML element

<book>

<author> Isaac Newton </author>

<title> Philosophiae Naturalis Principia Mathematica </title>

<year> 1687 </year>

</book>

That would be made with every non-checked dynamic message send (those starting with ?).

9.9 A Problem with Grammar Methods

There is a problem with grammar methods, related to functions, that can only be properly understood
after reading Chapter 10.

object FunctionBox

fun (add: Function<Nil>)* (Array<Function<Nil>> t) {

b = t[0];

}

fun do {

b eval;

}

Function<Nil> b;

end

...

if 0 < 1 {

var Int i = 0;

FunctionBox add: { ++i }

}

FunctionBox do;

Here function { ++i } is passed as a parameter to method add: which assigns the function to instance
variable b. When method do is called in the last line, b receives message eval which causes the execution
of the function which accesses variable i causing a runtime error: this variable does not exist anymore.
However, this error will never happens because: a) there cannot exist object Array<Function<Nil>>

and b) assignment “b = t[0]” is illegal because r-functions cannot be assigned to instance variables.
However, the restrictions on the use of functions limit too much the use of grammar methods taking
functions as parameters. A switch grammar method declared as below would cause a compile-time
error.

fun (

(case: (T)+ do: Function<Nil>)+

(else: Function<Nil>)?

) (Tuple<Any, Array<Tuple<Array<T>, Function<Nil>>>, Union<Function<Nil>>> t)

{

// method body

}

It is necessary to use Function<Nil> instead of UFunction<Nil> to allow access to local variables:

var String lifePhase;
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n

case: 0, 1, 2 do: {

lifePhase = "baby"

}

case: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 do: {

lifePhase = "child"

}

case: 13, 14, 15, 16, 17, 18, 19 do: {

lifePhase = "teenager"

}

else: {

lifePhase = "adult"

};

There are several solutions to this problem, none of them ideal:

(a) change the definition of functions. Any local variable used inside a function without % is allocated in
the heap. This causes performance problems but otherwise this is an ideal solution. Local variables
are usually allocated in the stack which is very fast. Note that both the variables and the objects
they refer to would be heap-allocated;

(b) restrict the way the single parameter t of a grammar method can be used. This can take two forms.
In the first one, any assignment from and to any field of t, even the nested ones, should be prohibited
if there is any Function type appearing in the parameter type. The assignments are made using
methods. So, if t has type

Tuple<Tuple<Array<Int>, Float>, Union<Int, Tuple<String, Function<Nil>>>>

then the message sends of the code below would be illegal.

1 t = u;

2 t f1: aif;

3 aNumber = (t f1) f2;

4 t f2: newUU;

5 newUU = t f2;

6 (t f2) f2: c;

7 k = ((f f2) f2) f2;

8 ((f f2) f2) f2: = gg;

That is too radical but simple. It is this restriction that is adopted by Cyan.

A less restrictive rule would be to prohibit assignments only in the path from t to any type Function.
In this case, assignments of lines 2 and 3 would be legal.

Section h (page 196) makes a proposal for correcting this problem. For short, Array<T> will be a
restricted array whenever T is a restricted function. This should probably work.

9.10 Limitations of Grammar Methods

There are two limitations of grammar methods:

(a) polymorphim does not apply to them because all grammar methods are implicitly “final”. It is illegal
to redefine a grammar method in a sub-prototype. So one cannot have multiple implementations of
a Domain Specific Language and select one of them dynamically using a message send;
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(b) grammar methods cannot be declared in an interface.

There is no technical problem (till I know) in removing these limitations. They only exist to make the
compiler simpler. Probably they will be lifted in the future.
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Chapter 10

Functions

Functions of Cyan are similar to blocks of Smalltalk or anonymous functions of other languages. A
function is a literal object — an object declared explicitly, without being cloned of another object. A
function may take arguments and can declares local variables. The syntax of a literal function is:

{ (: ParamRV :) code }

ParamRV represents the declaration of parameters and the return value type (optional items). A function
is very similar to a method definition — it can take parameters and return a value. For example,

b = { (: Int x -> Int :) ^ x*x };

declares a function that takes an Int parameter and returns the square of it. Symbol ^ is used for
returning a value. However, to b is associated a function, not a return value, which depends of the
parameter. Functions are objects and therefore they support methods. The function body is executed
by sending to the message eval: with the parameters the function demands or eval if it does not take
parameters. For example,

y = b eval: 5;

assigns 25 to variable y. The eval: methods are similar to Smalltalk´s value methods. We have chosen
a method name different from that of Smalltalk because in Cyan a function may not return a value when
evaluated. In Smalltalk, it always does.

The function { (: Int x :) ^ x*x } is similar to the object

object LiteralFunction001

fun eval: (Int x) -> Int {

^ x*x;

}

end

For every function the compiler creates a prototype like the above. Then two identical functions give origin
to two different prototypes. There are important differences between the function and this prototype
which will be explained in due time.

The return value type of a function can be omitted. In this case, it will be the same as the type of the
return value of the expression returned — all returned values should be of the same type. For example,

{ (: Int x, Int y :)

var Int r;

r = sqrt: ((x-x0)*(x-x0) + (y-y0)*(y-y0));

^ r }

declares a function which takes two parameters, x and y, declares a local or temporary variable r,1 and

1Which of course can easily be removed as the function can return the expression itself.
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returns the value of r (therefore the return value type is Int). Assume that this function is inside an
object which has a method called sqrt:. Variables x0 and y0 are used inside the function but they are
neither parameters nor declared in the function. They may be instance variables of the object or local
variables of functions in which this literal function is nested. These variables can be changed in the
function.

The language does not demand that the return value type of a function be declared. In some situations,
the compiler may not be able to deduce the return type:

var b = { ^b };

To prevent this kind of error, when a function is assigned to a variable b in its declaration, as in this
example, b is only considered declared after the compiler reaches the beginning of the next statement.
Then in this code the compiler would sign the error “b was not declared”. In the general case, in an
assignment “var v = e” variable v cannot be used in e.

Sometimes a function should return a value for the method in which it is instead of returning a value
for the call to eval or eval:. For example, in an object Person that defines a variable age, method
getLifePhase should return a string describing the life phase of the person. This method should be
made using keyword return as shown below.

fun getLifePhase -> String {

if age < 3 { return "baby" }

else if age <= 12 { return "child" }

else if age <= 19 { return "teenager" }

else { return "adult" }

}

If ^ were used, this would be considered to be the return of the function, not the return of the method.
A return statement causes a return to the method that called the current method, as usual.

Generic arrays of Cyan have a method foreach that can be used to iterate over the array elements.
The argument to this method is a function that takes a parameter of the array element type. This
function is called once for each array element:

var Array<Int> firstPrimes = {# 2, 3, 5, 7, 11 #};

// prints all array elements

firstPrimes foreach: { (: Int e :)

Out println: e

};

var sum = 0;

// sum the values of the array elements

firstPrimes foreach: { (: Int e :)

sum = sum + e

};

Out println: sum;

An statement ^ expr is equivalent to return expr when it appears in the level of method declaration;
that is, outside any function inside a method body. See the example:

fun aMethod: (Int x, Int y) {

var b = { ^ x < 0 || y < 0 };

// method does not return in the next statement

(b eval) ifTrue: { Error signal: "wrong coordinates" };

// method returns in the next statement
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^ sqrt: ((Math sqr: x) * (Math sqr: y));

}

10.1 Problems with Anonymous Functions

Anonymous functions are extremely useful features. They are supported by many functional and object-
oriented languages such as Scheme, Haskell, Smalltalk, D, and Ruby. However, this feature causes a
runtime error when

(a) an anonymous function accesses a local variable that is destroyed before the function becomes inac-
cessible or is garbage collected. Then the body of the function may be executed and the non-existing
local variable may be accessed, causing a runtime error;

(b) a function with a return statement live past the method in which it was declared. When the anony-
mous function body is executed, there will be a return statement that refers to a method that is no
longer in the call stack.

We will give examples of these errors. Assume that “Function<Nil>” is the type functions that does not
take parameters and returns nothing.2

object Test

fun run {

prepareError;

makeError;

}

fun prepareError {

function = { return };

return;

}

fun makeError {

function eval;

}

Function<Nil> function

end

In makeError, the function stored in the instance variable receives message eval and statement return is
executed. This is a return from method prepareError that is no longer in the stack. There is a runtime
error.

object Test

fun run {

returnFunction eval

}

fun returnFunction -> Function<Nil> {

return { return };

}

end

2This is not exactly true and this definition will soon be corrected.
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Here returnFunction returns a function which receives message eval in run. Again, statement return
of the function is executed in method run and refers to returnFunction, which is not in the call stack
anymore.

object Test

fun run {

prepareError;

makeError;

}

fun prepareError {

var x = 0;

function = { ^x };

}

fun makeError {

Out println: (function eval);

}

Function<Int> function

end

In statement “function eval” in method makeError, the function body is executed which accesses
variable x. However, this variable is no longer in the stack. It was when the function was created in
prepareError because x is a local variable of this method. There is again a runtime error.

object Test

fun run {

var a1 = 1;

var Function<Nil> b1;

if a1 == 1 {

var a2 = 2;

var b1 = { Out println: a2 };

};

b1 eval

}

end

Here a function that uses local variable a2 is assigned to variable b1 that outlives a2. After the if
statement, a2 is removed from the stack and message eval is sent to b1, causing an access to variable a2

that no longer exists.
Function< Function<Int> > is the type of functions that return objects of type Function<Int>.

object Test

fun run {

var a1 = 1;

var Function< Function<Int> > b1;

if a1 == 1 {

var a2 = 2;

var b1 = { ^{ ^a2 } }

};

(b1 eval) eval;

}

end
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After the execution of “var b1 = { ^{ ^a2 } }”, b1 refers to a function that refers to local variable a2.
In statement (b1 eval) eval, variable a2, which is no longer in the stack, is accessed causing a runtime
error.

There are some unusual use of functions that would not cause runtime errors:

object Test

fun run {

var a1 = 1;

var Function<Int> b1;

if a1 == 1 {

var b2 = {

var b1 = { ^a1 }

};

b2 eval;

};

b1 eval

}

end

No error occurs here because b1 and a1 are create and removed from the stack at the same time.

object Test

fun run {

var a1 = 1;

var Function<Function<Int>> b1;

if a1 == 1 {

var b1 = { ^{ ^a1 } }

};

Out println: ( (b1 eval) eval );

}

end

Here (b1 eval) eval will return the value of a1 which is in the stack. No error will occur.

object Test

fun run {

Out println: test

}

fun test -> Int {

var Function<Nil> b1;

{

var b2 = {

b1 = { return 0 };

};

b2 eval;

} eval;

b1 eval;

Out println: 1

}

end
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After message send “b2 eval” a function is assigned to b1. After “b1 eval” statement “return 0” is
executed and method test returns. The last statement is never reached. Note that function

{ return 0 }

is a function that does not return a value. Therefore its type is Function<Nil>.

10.2 Some More Definitions

A Cyan function is a closure, a literal object that can close over the variables visible where it was defined.
More rigorously, the syntax { (: params :) stats } creates a closure at runtime for the linking with
the instance and local variables is only made dynamically. An object is created each time a function
appears at runtime. Therefore the code

var Int x;

var Function<Int> a, b, c;

a = {^ i*i + x };

b = {^ i*i + x };

c = {^ i*i + x };

creates three functions, each of which captures variable x.
Variables used inside a function can be preceded by a % to indicate that a copy of them should be

made at the function creation. Then any changes of the values of these variables are not propagated to
the environment in which the function is. See the example.

fun Int test {

var x = 0;

var y = 0;

var b = {

%x = %x + 1;

Out println: %x;

y = y + 1;

};

assert: (x == 0 && y == 0);

b eval;

assert: (x == 0 && y == 1);

return x + y;

}

%x inside the function means a copy of the local variable x. The y inside the function means the local
variable y. The changes to it caused by statement b eval will remain. It is illegal to use both x and %x
in a function. It is illegal to use % with a parameter — since parameters are read only, it is irrelevant to
use % with them.

10.3 Classifications of Functions: u-Functions and r-Functions

Before studying functions in depth, it is necessary to define what is “scope”, “variable of level k”, and
“function of level k”. Each identifier is associated to a scope, the region of the source code in which the
identifier is visible (and therefore it can be used). A scope can be the region of a method or of a function,
both delimited by { and }. The scope of a local variable starts just after its declaration and goes to the
enclosing “}” of the function in which it was declared. A scope will be called “level 1” if the delimiters
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{ and } are that of a method. “level 2” is the scope of a function inside level 1. In general, scope level
n+ 1 is a function inside scope n:

fun test: (Int n) {

// scope level 1

var Int a1 = n;

(n < 0) ifFalse: {

// scope level 2

var Int a2 = -a1;

(n > 0) ifTrue: {

// scope level 3

var a3 = a2 + 1;

Out println: "> 0", a3

}

ifFalse: { Out println: "= 0" }

}

} // a1 and n are removed from the stack here

We will call “variable of level k” a variable defined in scope level “k”. Therefore variable ai of this
example is a variable of level i. The level of parameters is considered -1. There is no variable of level 0.

The variables external to a function are those declared outside the code between and that delimits
the function. For example, a1 is external to the function passed as parameter to selector ifFalse: in
the previous example (any of the ifFalse: selectors). And a1 and a2 are external to the function that
is argument to the selector ifTrue:.

A function is called “function of level -1” if it

(a) only accesses external local variables using %;

(b) possibly uses parameters (always without % because it is illegal to use % with parameters);

(c) possibly uses instance variables;

(d) does not have return statements;

By “access” a local variable we mean that a local variable appear anywhere between the function delim-
iters, which includes nested functions. In the example that follows, the function that starts at line 3 and
ends at line 7 accesses local variable a1 which is external to the function. This access is made in the
function of line 5 which is inside the function of lines 4-6 which is inside the 3-7 function. Therefore 3-7

is not a function of level -1. And neither is the function of lines 4-6 or the function of line 5. However,
the function that is the body of method test (lines 1-8) is a function of level -1.

1 fun test {

2 var a1 = 1;

3 { var a2 = 2; // start

4 { var a3 = 3;

5 { ++a1 } eval;

6 } eval;

7 } eval // end

8 }

Let v1, v2, ..., vn be the external local variables accessed in a function B without % — B is a function,
not a variable that refers to a function. Instance variables and parameters are not considered. If m is the
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level in which B is defined, then B can only access external local variables defined in levels ≤ m. But not
all variables of levels ≤ m are visible in B for some of them may belong to sister functions or they may
be defined after the definition of B. Variables defined in levels > m are either inaccessible or internal to
the function. The following example explains these points.

fun test {

// level 1

var a1 = 1;

{ // level 2

var a2 = 2; // start of function B1

{ // level 3

var a31 = 31; // start of function B2

{ ++a1 } eval; // function B3

} eval; // end B2

var a22 = 2;

{ // level 3

var a32 = 32; // start of function B4

{ // start of function B5

// level 4

var a5 = 5;

a2 = a1 + a2 + a5

} eval // end B5

} eval; // end B4

} eval // end B1

}

Function B2 is defined at level 2 but it cannot access variable a22 of level 2 — it is defined after B2.
Variable a5 defined at level 4 is not visible at function B2.

The important thing to remember is “B defined at level m can only access external local variables
defined in levels ≤ m”, although not all variables of levels ≤ m are accessible at B. The example of
Figure 10.1 should clarify this point. Ellipses represent functions. A solid arrow from function C to
function B means that C is inside B. A dashed arrow from C to B means that C uses local variables
declared in B.

This Figure represents the functions of the example that follows. The root is the function of the
method itself which is represented by the top-level ellipse in the Figure. The numbers that appear in the
ellipses are the return values of the functions. This number is used to identify the functions (we will say
function 0 for the function that returns 0). The values returned by all the functions are not used (the
return value of a method may be ignored. Statements like “1 + 2” are legal).

fun test {

var v0 = 0;

{

var v1 = 1;

{

++v1;

++v0;

^3

} eval;

var v11 = 2;

{
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source uses local variables of the target

source is inside the target

0

1 2

3 4 5

6

Figure 10.1: Nesting of functions

++v0;

^4

} eval;

^1

} eval;

{

var v2 = 2;

{ ^5

{

++v0;

++v2;

^6

} eval;

} eval;

^2

} eval;

^0

}

By the scope rules of Cyan, a function B can only access its own local variables or variables from functions
that are ancestors of B.3 Only variables declared before B are accessible. In this example, the function
that returns 3 cannot access v11 even though this variable is declared in an outer function (because the
declaration appears after the declaration of function 3). In the Figure, a function B may access local
variables of function A if there is a path in solid arrows from A to B (we will write just path from A to
B).

When method eval or eval: of a function A is called, the runtime system pushes to the stack the
local variables of A. Till the method returns, these local variables are there and they can be accessed
by functions declared inside A. Using the Cyan example above and the Figure, when method eval of

3X is an ancestor of Y if Y is textually inside X.
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function 0 is called, it pushes its local variables to the stack. Then function 1 is called and this function
calls function 4 that accesses variable v0 declared at function 0. No error occurs because v0 is in the
stack. To call function 4 it was first necessary to call function 1 and, before this, function 0 which declares
variable v0.

However, this example could be modified in such a way that function 3 is assigned in function 1 to a
variable b1 declared at function 0 (suppose this is legal — it is not as we will see).

// unimportant functions were removed

fun test {

var v0 = 0;

var Function<Int> b1;

{

var v1 = 1;

b1 = {

++v1;

++v0;

^3

};

var v11 = 2;

^1

} eval;

// compile-time correct, runtime error

b1 eval;

^0

}

b1 is visible in function 1 by the scope rules of Cyan. After functions 3 and 1 are removed from the stack
and control returns to method eval of 0, b1 receives an eval message. Since b1 refers to function 3, the
method called will try to access variable v1 declared in function 1. This variable is no longer in the stack.
There would be a runtime error. However, the rules of Cyan will not allow function 3 be assigned to
variable b1 of function 0. A function variable b will never refer to a function that uses external variables
that live less than b.

Inner functions may be assigned to variables of outer functions without causing runtime errors:

fun test {

var a1 = 1;

var Function<Nil> b;

{

var a2 = 2;

{

{

b = { ++a1; }

} eval

} eval;

c eval;

} eval;

b eval;

}

Here a function { ++a1 } is assigned to variable b declared at level 1. This does not cause errors because
the function only refer to variables of level 1. Variable b and a1 will be removed from the stack at the
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same time. There is no problem in this assignment. In this example, if the function used a2 instead of
a1, there would be a runtime error at line “b eval”. Variable a2 that is no longer in the stack would be
accessed. To prevent runtime errors of the kind “reference to a variable that is no longer in the stack”
Cyan only allows an assignment “b = B”, in which B is a function, if the variables accessed in B will live
as much as b. This is guaranteed by the rules given in the next section.

Functions are classified according to the external local variables they access and if they have or not
return statements. To a function B is associated a number bl(B) called “the level of function B” found
according to the following rules.

1. A function that accesses local variables only using % and that do not have return statements (even
considering nested functions) are called “functions of level -1”. This kind of function may access
parameters;

2. Functions that access at least one external local variable (excluding parameters) without using %
have their number bl(B) calculated as

bl(B) = max{ lev(v1), lev(v2), ..., lev(vn) }

lev(v) is the level of variable v. v1, v2, ..., vn are the external local variables accessed in function
B without %. The “function level” of B is bl(B).

3. A function that do not access any local variables (excluding parameters) without % but that does
have a return statement (even in nested functions) is called “function of level 0”. This function
may access variables with %.

For short, a function that have a return statement is at least of level 0. A function that has a reference
to a external local variable of level k4 is at least a function of level k. However, it may be a function of
level ≥ k (if it accesses an external variable, without %, of a superior level). The use of instance variables
or parameters is irrelevant to the calculus of the level of a function. Instance variables are not created
with the method or when the function receives message eval or eval:. And parameters are read only
— it is as if every parameter were used with %.

The definition of bl(B), the level of a function, is different from the definition “function defined or
declared at level k” used previously. A function defined at level k is a function that is textually at level k.
The function level of a function depends on the external local variables that appear in its body (including
the nested functions inside it).

The higher the level of a local variable a function accesses, the more restrictive is the use of the
function. For example, function B3 in the next example can be assigned to any of the local function
variables bi of this example. But B4 cannot. If it is assigned to b2, for example, the message send “b2
eval” would access a local variable a31 that is no longer in the stack.

fun test {

// level 1

var a1 = 1;

var Function<Nil> b1;

{ // start of function B1

// level 2

var a2 = 2;

var Function<Nil> b2;

{ // start of function B2

4Use the variable without %.
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// level 3

var a31 = 31;

var Function<Nil> b31;

var b31 = { ++a1 }; // function B3

var Function<Nil> b32;

b32 = { ++a31 }; // function B4

b2 = { ++a2 };

} eval;

b2 eval;

} eval;

b1 eval;

}

The example below should clarify the definition of “function level k”.

fun Int test: (Int p) {

// level 1

var a1 = 1;

var b1_1 = { ^a1 }; // function of level 1, defined at level 1

var b1_2 = { ^0 }; // function of level -1, defined at level 1

varb1_3 = { // function of level 1 because it uses a1

// level 2

var a2 = 2;

varb2_1 = { ^a1 }; // function of level 1, defined at level 2

var b2_2 = { a2 = 1 }; // function of level 2, defined at level 2

var b2_3 = { return p }; // function of level 0, defined at level 2

var b2_4 = { Out println: %a2 }; // function of level -1, defined at level 2

var b2_5 = { // function of level 2 because it uses a2

// level 3

var a3 = 3;

var b3_1 = { b1_1 eval }; // function of level 1, defined at level 3

varb3_2 = { ++a2; return }; // function of level 2, defined at level 3

var b3_3 = { ^a3 }; // function of level 3, defined at level 3

var b3_4 = { return }; // function of level 0, defined at level 3

var b3_5 = { ^p }; // function of level -1, defined at level 3

}

};

b1_3 eval;

return 0

}

A function of level -1 may access local variables using %, parameters without using %, and instance
variables. Functions of level -1 are called u-functions or unrestricted-use functions. There is no restriction
on the use of u-functions: they may be passed as parameters, returned from methods, returned from
functions, assigned to instance variables, or assigned to any variable. They only have the type restrictions
of regular objects.

Functions of levels 0 and up are called r-functions or restricted-use functions. There are limitations
in their use: they cannot be stored in instance variables, returned from methods and functions, and there
are limitations on the assignment of them to local variables. This will soon be explained.
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An r-function that takes parameters of types T1, T2, ..., Tn and returns a value of type R inherits from
prototype

@restricted abstract object Function<T1, T2, ..., Tn, R>

abstract fun eval: (T1, T2, ..., Tn) -> R

end

@restricted is a pre-defined metaobject that restricts the way this kind of function is used — see
Section 10.4. These restrictions apply to this prototype only. It does not apply to sub-prototypes.

There is a special prototype Function<Boolean> with methods whileTrue: and whileFalse:

package cyan.lang

@restricted abstract object Function<Boolean>

abstract fun eval -> Boolean

fun whileTrue: (Function<Nil> aFunction) {

(self eval) ifTrue: {

aFunction eval;

self whileTrue: aFunction

}

}

fun whileFalse: (Function<Nil> aFunction) {

(self eval) ifFalse: {

aFunction eval;

self whileFalse: aFunction

}

}

end

These methods implement the while construct as explained in Section 3.7.
An r-function that does not take any parameters and does not return a value inherits from

package cyan.lang

@restricted

abstract object Function<Nil>

abstract fun eval

fun loop {

self eval;

self loop

}

fun repeatUntil: (Function<Boolean> test) {

self eval;

(test eval) ifFalse: {

self repeatUntil: test

}

}

fun ( (catch: Any)+ finally: Function<Nil> ) t {

}

fun hideException {

{
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self eval

} catch: { (: CyException e :)

};

}

end

Method loop implements an infinite loop and repeatUntil: implements a loop that ends when the
function parameter evaluates to true.

An u-function that takes parameters of types T1, T2, ..., Tn and returns a value of type R inherits
from prototype Function<T1, T2, ..., Tn, R>

@unrestricted abstract object UFunction<T1, T2, ..., Tn, R>

extends Function<T1, T2, ..., Tn, R>

end

Therefore the above prototype also defines a method
abstract fun eval: (T1, T2, ..., Tn) -> R

An u-function that does not take any parameters inherits from

@unrestricted abstract object UFunction<Nil>

extends Function<Nil>

end

There is a special prototype UFunction<Boolean> with methods whileTrue: and whileFalse: in-
herited from Function<Boolean>.

@unrestricted

abstract object UFunction<Boolean>

extends Function<Boolean>

end

An u-function that does not take any parameters and returns nothing implements

@unrestricted abstract object UFunction<Nil>

extends Function<Nil>

end

Every function has its own prototype that inherits from one of the Function or UFunction objects.
When the compiler finds a function

{ ^n }

it creates a prototype Function001 that inherits from Function<Int> (assume that n is a local Int
variable). The name Function001 was chosen by the compiler and it can be any valid identifier. If this
function is assigned to a variable in an assignment,

var b = { ^n }

the type of b will be Function<Int>. Of course, Function001 is declared with the @restricted metaob-
ject.
As another example, the type of variable add in

var add = { (: Int n :) ^n + 1 };

could be UFunction017. Since this function inherits from UFunction<Int, Int> we can declare add

before assigning it a value as
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var UFunction<Int, Int> add;

add = { (: Int n :) ^n + 1 };

All methods of a function but eval: are regular methods. eval: methods of functions are called
primitive methods. A primitive method is not an object. The only allowed operation on a primitive

method is to call it.
Functions are them a special kind of object, one that has a method, eval: or eval that is not an

object. Only eval: or eval methods of functions are primitive methods. However, all prototypes that
extend prototype UFunction or Function can be passed as an argument to a method that expect an
UFunction or Function as a real parameter. For example, an Int array defines a foreach: method
that expects an r-function as parameter that accepts an Int parameter and returns Nil. One can pass
as parameter a regular object:

object Sum extends UFunction<Int, Nil>

public sum = 0

fun eval: (Int elem) {

sum = sum + elem

}

end

...

var Array<Int> v = {# 2, 3, 5, 7, 11, 13 #};

v foreach: Sum;

Out println: "array sum = " + (Sum s);

Warning
Cyan will allow metaobjects to be attached directly to types as in

var Char@letter ch;

ch = ’A’; // ok

ch = ’0’/ // compile-time error

Here metaobject letter is attached to Char and controls the type checking of ch. This feature will be
used with Functions. A metaobject rf will be attached to prototype Function to give the precise type
of a function:

fun Int test {

var Int a1 = 0;

var f0 = { return 0; };

var f1 = {

++a1;

};

var f2 = { ^0 };

(f2 eval) println;

f1 eval;

f0 eval;

}

The types of the function variables will be:

f0 Function@rf(0)

f1 Function@rf(1)

f2 Function

Note that Function without the

metaobject will be the nowadays UFunction.
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10.4 Type Checking Functions

Now it is time to unveil the rules that make functions statically typed in Cyan. The rules are:

(a) there is no restriction on the use of u-functions and variables whose type is UFunction<..., R>. An
instance variable can have type UFunction<..., R>;

(b) instance variables cannot have type Function<T1, ... Tn, R>;

(c) methods and functions cannot have Function<T1, ... Tn, R> as the return type;

(d) a variable r declared at level k whose type is Function<T1, ... Tn, R> may receive in assignments:

• a variable s of level m if m ≤ k and the type of s is Function<T1, ... Tn, R> or one of its
subtypes, including UFunction<T1, ... Tn, R>;

• an r-function of level m if m≤ k and this r-function extends prototype Function<T1, ... Tn, R>;

• an u-function that extends prototype UFunction<T1, ... Tn, R>;

(e) a parameter whose type is Function<T1, ... Tn, R> is considered a variable of level 0. The real
argument corresponding to this parameter may be a variable or function of any level. Of course, the
type of the variable or function should be Function<T1, ... Tn, R> or one of its subtypes;

(f) a variable or parameter whose type is Any cannot receive as real argument any r-function. Unfortu-
nately this introduces an exception in the subtype hierarchy: a sub-prototype may not be a sub-type.
For example, Function<Int> is not subtype of Any. Although a function like { ^0 } inherits from
Any (indirectly), its type is not considered subtype from Any. The only way of correcting this is
allocating the local variables in the stack — see Section 10.12. But that is inefficient to say the least.

Based on the rules for type checking functions, one can conclude that:

(a) instance variables can be referenced by both u-functions and r-functions;

(b) a function that has a return statement but does not access any local variables is a function of level
0. Its type is Function<T1, ... Tn, R> for some types Ti and R;

(c) the restriction “methods and functions can have Function<T1, ... Tn, R> as the return type (but
not Function<T1, ... Tn, R> could be changed to “a method can only return u-functions and a
function defined at level k can only return a function if it is of level m with m ≤ k”. In the same way,
a function defined at level k can have a variable as the return value if this variable is of level m with
m ≤ k. However, we said “could”, these more liberal rules are not used in Cyan;

(d) since parameters are read-only, it is not possible to assign a variable or function to any of them;

(e) both r-functions and u-functions can access instance variables since their use do not cause any prob-
lems — instance variables belong to objects allocated in the heap, a memory space separated from
the stack. Then it is legal to return a function that accesses an instance variable or to assign such a
function to any UFunction variable:

object Person

@init(name, age)

fun init { }

private fun functionCompare -> UFunction<Person, Boolean> {

return { (: Person p :) ^age > (p age) }
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}

public String name = "noname"

public Int age = 99

end

...

var myself = Person new;

// method name: String age: Int is automatically created

myself name: "José" age: 14;

if (Person functionCompare) eval: myself {

Out println: "Person is older than José";

}

(f) the type of an instance variable or return method value cannot be an r-function. But it can be
an u-function. Therefore there will never be an instance variable referring to a function that has a
reference to a local variable. And a function returned by a method will never refer to a local method
variable;

(g) a parameter that has type Function<T1, ... Tn, R> cannot be assigned to any variable of the same
type because this variable is of level at least 1 and the parameter is of level -1;

(h) the generic prototype Array<T> declares an instance variable of type T. Therefore the generic array
instantiation Array<Function<T1, ... Tn, R>> causes a compile-time error — r-functions cannot
be types of instance variables. In the same way, Function<T1, ... Tn, R> cannot be the parameter
to most generic containers (yet to be made) such as Hashtable, Set, List, and so on.

This is regrettable. We cannot, for example, create an array of r-functions:

var sum Float = 0;

var prod Float = 0;

var sumSqr Float = 0;

mySet applyAll: {# { (: Float it :) sum += it },

{ (: Float it :) prod *= it },

{ (: Float it :) sumSqr += it*it } #};

Future version of Cyan could employ a different rule: a restricted function or any restricted object
could be the type of an instance variable of prototype P if P is a restricted object (declared with
metaobject @restricted). Arrays, tuples, and the like would automatically be restricted or not
according to the parameter type. So Array<Function<Int, Nil>> would be a restricted type but
Array<UFunction<Int, Nil>> would not.

The rules for checking the use of r-functions are embodied in metaobject @restricted. The compiler
passes the control to this metaobject when type checking r-functions. It then implements the above rules.

10.5 Some Function Examples

In the example that follows, some statements are never executed when message run is sent to A. In
particular, when message eval is sent to b the control returns to method run which prints 0. All the
intervening methods are removed from the stack of called methods.

object A

fun run {
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Out println: (self m)

}

fun m -> Int {

p: { return 0 };

Out println: "never executed";

}

fun p: (Function<Nil> b) {

t: b;

Out println: "never executed";

}

fun t: (Function<Nil> b) {

b eval;

Out println: "never executed";

}

end

In this example, an r-function is passed as a parameter. There is no runtime error.

object A

fun aMethod {

var Int x;

x = In readInt;

Out println: (anotherMethod: { (: Int y :) ^y + x });

}

fun anotherMethod: (Function<Int, Int> b) ) -> Int {

^ yetAnotherMethod: b;

}

fun yetAnotherMethod: (Function<Int, Int> b) -> Int {

^ b eval: 0;

}

...

end

Method aMethod calls anotherMethod which calls yetAnotherMethod. No reference to function { (: Int y :) ^y + x }

last longer than local variable x.
A parameter of type Any cannot receive an r-function as real argument. If it could, a runtime error

would occur.

object Test

fun test {

{ var n = 0;

// function passed as parameter. The

// real argument has type Any

do: { ++n }

} eval;

makeError

}

fun do: (Any any) {

self.any = any

}
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fun makeError {

// access to local variable n

// that no longer exists

any ?eval

}

Any any

end

10.6 Why Functions are Statically-Typed in Cyan

This section does not present a proof that functions in Cyan are statically typed. It just gives evidences
of that.

To introduce our case we will use functions B0, B1, ..., Bn in which Bi is defined at level i and Bi+1

is defined inside Bi. So there is a nesting
Bn ⊂ Bn−1 ⊂ . . . ⊂ B1 ⊂ B0

It was used ⊂ to mean “nested in”. Function Bj declares a local variable vj . Note that B0 is the body
of a method (functions of level 0 are always methods).

Suppose Bn uses external local variables vi1 , vi2 , ..., vik of functions Bi1 , Bi2 , ..., Bik with i1 < i2 <
. . . ik−1 < ik. It is not important whether Bn uses or not more than one variable of each function.

Let us concentrate on Bik which defines variable vik accessed by Bn. Since there is a nesting structure,
functions Bik+1, Bik+2, ..., Bn−1 also have references to vik (because Bn is nested inside these functions).
This fact is used in the following paragraph.

Bn can be assigned to a function variable of Bj with ik ≤ j < n. This does not cause a runtime error
because a function Bj with ik ≤ j < n is only called when Bik is in the stack. Bj cannot be assigned to
a variable bt of level t with t < ik because Bj also has a reference to vik and, by the rules, it can only be
assigned to variables that appear in function Bt with ik ≤ t < j.

Bn also has a reference to variable vik−1
of Bik−1

. Therefore Bn could not be assigned to function
variables of functions Bj with j < ik−1. Considering all cases, Bn cannot be assigned to function variables
of functions Bj with

j < i1
j < i2
. . .
j < ik−1

j < ik

Since i1 < i2 < . . . ik−1 < ik, we conclude that Bn cannot be assigned to a function variable of
function Bik . Then Bn can only be assigned to a function variable of function Bj with j ≥ ik. This is
what one of the rules of Section 10.4 says. Therefore these rules prevent any runtime errors of the kind
“access to a function variable that does not exist anymore” related to the assignment of r-functions to
local variables. It is not difficult to see that the other rules prevent all of the other kinds of errors related
to r-functions such as the passing of parameters, assignment of functions to Any variables, assignment of
r-functions to instance variables (not allowed), and so on.

10.7 Functions with Multiple Selectors

Regular functions only have one selector, which is eval: or eval (when there is no parameter). It is
possible to declare a function with more than one eval: selector. One can declare
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var b = { (: eval: (T11 p11, T12 p12, ..., T1k1 p1k1)

eval: (T21 p21, T22 p22, ..., T2k2 p2k2)

...

eval: (Tn1 pn1, Tn2 pn2, ..., Tnkn
pnkn

)

-> R :) {

// function body

};

Consider a function with a method composed by n eval: selectors. The ith eval selector has ki
parameters. This function inherits from prototype

Function<T11, T12, ..., T1k1><T21, T22, ... T2k2>...<Tn1, Tn2, ... Tnkn, R>

A similar u-function inherits from the corresponding UFunction generic prototype.
The eval method corresponding to the above function is

fun eval: ( T11 p11, T12 p12, ..., T1k1 p1k1)

eval: ( T21 p21, T22 p22, ..., T2k2 p2k2)

...

eval: ( Tn1 pn1, Tn2 pn2, ..., Tnkn pnkn) -> R

{

// function body

}

As an example, one can declare a function

var Function<String><Int, Nil> b;

b = { (: eval: (String key) eval: (Int value) :)

Out println: "key #key is #value"

};

// prints "key One is 1"

b eval: "One" eval: 1;

10.8 The Type of Methods and Methods as Objects

Methods are objects in Cyan although of a special kind: they are functions. Then every method
fun s1: (T11 p11, T12 p12, ..., T1k1 p1k1)

s2: (T21 p21, T22 p22, ..., T2k2 p2k2)

...

sn: (Tn1 pn1, Tn2 pn2, ..., Tnkn pnkn) -> R

{

// function body

}

extends
UFunction<T11, T12, ..., T1k1><T21, T22, ... T2k2>...<Tn1, Tn2, ... Tnkn, R>

Cyan methods are then unrestricted functions. A method of a specific object is got by calling method
“getMethod:” of Any as in

obj getMethod: "signature"

in which signature is the method signature (selectors, parameter types, and return value type).
Consider the Box prototype:
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object Box

fun get -> Int { return value }

fun set: (Int other) { value = other }

Int value = 0

end

Methods of this prototype and of objects created from it can be accessed as in

var UFunction<Int> getMet;

var UFunction<Int, Nil> setMet;

var UFunction<Int, Nil> anotherGetMethod;

getMet = Box getMethod: "get -> Int";

setMet = Box getMethod: "set: Int";

var box = Box new;

box set: 10;

setMet eval: 5;

// prints 5

Out println: (getMet eval);

// prints 0

Out println: (box get);

This syntax can be used to set a method of a prototype such as

var Int local;

var Box b = Box new;

b setMethod: "get -> Int", { ^0 };

b setMethod: "set: Int", { (: Int n :) Out println: n };

assert: (b get == 0);

// method getDay of Date returns an Int

b setMethod: "get -> Int", (Date getMethod: "getDay -> Int");

A method of a prototype may be set too. The existing objects of that prototype are affected — they will
use the new method.

var Box before = Box new;

before set: 0;

Box setMethod: "get -> Int", { ^1 };

var Box after = Box new;

assert: (before get == 1);

assert: (after get == 1);

Method getMethod: returns an object of type Any. Then there should be a type error in the code
getMet = Box getMethod: "get -> Int";

But there is none because metaobject checkGetMethod attached to getMethod:

(a) checks whether the parameter is a literal string. It issues an error if it is not;

(b) checks whether the message receiver has a method with the same signature as the parameter;

(c) changes the return type of the message send to the appropriate type. Then
Box getMethod: "get -> Int"

has type UFunction<Int>.
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Metaobject checkSetMethod does similar checks to method setMethod:. It checks whether

(a) the first parameter is a literal string, issuing an error if it is not;

(b) the message receiver has a method with the same signature as the first parameter;

(c) the signature given in the first parameter is equal to the signature of the expression of the second
parameter. It signals a compiler error if it is not.

As seen before, eval: methods of functions are not objects. They are called primitive methods.
Although it is legal to call a primitive method, it is illegal to retrieve or set one using getMethod: or
setMethod:.

var UFunction<Int> b;

var UFunction<Int> getMet;

getMet = Box getMethod: "get -> Int";

// runtime error in the next line

b = getMet getMethod: "eval -> Int";

// runtime error in the next line

// if the previous assignment is commented

b setMethod: "eval -> Int", { (: -> Int :) ^0 };

Of course,the second runtime error will never occur because of the first. But you got the idea.
Although “b getMethod: "eval -> Int"” has type UFunction<Int> (as variable b has), there is

a runtime error: it is not legal to retrieve a primitive method as an object. They are not objects and
cannot be treated as such.

Methods that access instance variables are duplicated for every object of the prototype (at least
conceptually). If two objects of prototype Box are created then there are three instances that represent
method get (and three for set too, of course). This occurs because the method object closes over the
instance variables of the prototype in the same way a function closes over the local variables of a method.
As there are three objects there are three instance variables called value and three methods for get,
each one closing over one of the instance variables.

As an example of duplicating methods as objects, the following code compares two get methods of
different Box objects. Since they come from different objects, they are different.

// create a get method for the new object

var box = Box new;

// create another get method for the new object

var other = Box new;

assert: (box getMethod: "get -> Int") eq: (other getMethod: "get -> Int");

The same situation occurs with functions:

var n = 0;

1..3 repeat: {

var Int value = n;

++n;

var getFunction = { ^value };

Out println: (getFunction value);

};
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Since the function that is parameter to repeat: is executed three times, three functions objects { ^value }

are created, each of them closes over the local variable value. Note that variable value is created three
times since it is a local variable to the most external function.

A method defined as
fun s1: (T11p11, T12 p12, ..., T1k1 p1k1)

s2: (T21p21, T22 p22, ..., T2k2 p2k2)

...

sn: (Tn1pn1, Tn2 pn2, ..., Tnkn
pnkn

) -> R

{

// function body

}

assigns to slot s1:s2: ...sn : an u-function with the same method parameters and same return value
type as the method. Note that when we use the sign = in a method declaration we are not assigning
the expression to the method (as slot). Then 0 is not being assinged to method zero. Instead, 0 is the
return value of this method.

fun zero -> Int = 0

10.9 Message Sends

When a message is sent, the runtime system looks for an appropriate method in the object that received
the message. This search has already been explained in Section 4.11. After finding the correct method
�m, two actions may be taken:

(a) if m is an u-function, the primitive method eval: of the function is called;

(b) if m is a regular object, message eval or eval: ... that matches the original message is sent to m

(with the original parameters). In this case, m should extends one of the UFunction prototypes.

Using methods as objects is very convenient in creating graphical user interfaces. Listeners can be
regular methods. See the example.

object MenuItem

fun onMouseClick: (UFunction<Nil> b) {

...

}

end

object Help

fun show { ... }

...

end

object FileMenu

fun open { ... }

end

...

var helpItem = MenuItem new;
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helpItem onMouseClick: (Help getMethod: "show");

var openItem = MenuItem new;

openItem onMouseClick: (FileMenu getMethod: "open");

...

10.10 Methods of Functions for Decision and Repetition

Objects Function<Boolean> and UFunction<Boolean> define some methods used for decision and iter-
ation statements. The code of these methods is shown below.

package cyan.lang

@restricted abstract object Function<Boolean>

abstract fun eval -> Boolean

fun whileTrue: (Function<Nil> aFunction) {

(self eval) ifTrue: {

aFunction eval;

self whileTrue: aFunction

}

}

fun whileFalse: (Function<Nil> aFunction) {

(self eval) ifFalse: {

aFunction eval;

self whileFalse: aFunction

}

}

end

10.11 Context Functions

Prototype Any (Section 4.13) defines a grammar method for dynamically adding methods to prototypes.
It is necessary to specify each selector, the types of all parameters, the return value type, and the method
body. This grammar method has the signature

fun (addMethod:

(selector: String ( param: (Any)+ )?

)+

(returnType: Any)?

body: Any)

Suppose we want to add a print method dynamically to prototype Box:

object Box

fun get -> Int { return value }

fun set: (Int other) { value = other }

Int value = 0

end
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We want to add a print method to every object created from Box or that has already been created using
this prototype using new or clone (with the exception to those objects that have already added a print

method to themselves). This method, if textually added to Box, would be

fun print { Out println: get }

Note that Any already defines a print method. However, the method print we define has a behavior
different from that of the inherited method.

A first attempt would to add print dynamically would be

Box addMethod:

selector: #print

body: { Out println: get };

However, there is a problem here: it is used get in the function that is parameter to selector body:. The
compiler will search for a get identifier in the method in which this statement is, then in the prototype,
and then in the list of imported prototypes, constants, and interfaces. Anyway, get will not be considered
as a method of Box, which is what we want. A second attempt would be

Box addMethod:

selector: #print

body: { Out println: (Box get) };

Here it was used Box get instead of just “get”. But then the print method of every object created from
Box will use the get method of Box:

var myBox = Box new;

myBox set: 5;

Box set: 0;

// prints 0

Box print;

// prints 0 too !

myBox print;

Since the print method was dynamically added, it has to be called using #. In this example, both calls
to print used the get method of Box, which returns the value 0.

This problem cannot be solved with regular functions. It is necessary to define a new kind of function,
context function to solve it. A context function is declared as

{ (: T self, parameters and return type :) body }

Part “T self” is new. It means that inside the method body self has type T. The identifiers visible
inside the function body are those declared in the function itself, those accessible through T, external
parameters, and local variables preceded by %. For each parameter or local variable preceded by %, the
function declares a variable with the same type and name. At the function creation, the values of the
external parameters and local variables are copied to these function variables.

var b = { (: Any self :) Out println: %n };

Methods of the current object can be accessed by means of a local variable:

var mySelf = self;

var b = {

(: Any self :)

Out println: (%myself age)

};
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Instance variables of the current object can be indirectly accessed by means of get and set methods of
local variables such as mySelf.

With context functions, the print method of one of the previous example can now be adequately
added to Box.

Box addMethod:

selector: #print

body: { (: Box self :) Out println: get };

Now the print method will send message get to the object that receives message #print:

var myBox = Box new;

myBox set: 5;

Box set: 0;

// prints 0

Box print;

// prints 5

myBox print;

Method addMethod: ... checks whether the context object passed in selector body: matches the
selectors, parameters, and return value.

// error: function with parameter, selector without one

Box addMethod:

selector: #print

body: { (: Box self, Int n :) Out println: n };

// error: function has no Int parameter

// and return value should be Int

Box addMethod:

selector: #add

param: Int

returnType: Int

body: { (: Box self -> String :) ^get asString };

The type of the context function

{ (: S self, T1 t1, T2 t2, ..., Tn tn -> R :) ... }

is

ContextFunction<S, T1, T2, ..., Tn, R>

Interface ContextFunction is defined as

interface ContextFunction<S, T1, T2, ..., Tn, R>

fun bindToFunction: S -> UFunction<T1, T2, ..., Tn, R>

end

Therefore the type of

{ (: S self, T1 t1, T2 t2, ..., Tn tn :) ... }

is

ContextFunction<S, T1, T2, ..., Tn, Nil>
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Assuming that there is no statement “^ expr” in the body of the context function.
The compiler creates a context object5 from a context function. From

{ (: S self, T1 t1, T2 t2, ..., Tn tn -> R :) ... }

that uses local variables and parameters v1, v2, ... vk the compiler creates

object ContextFunction001(V1 v1, ..., Vk vk)

implements ContextFunction<S, T1, T2, ..., Tn, R>

fun bindToFunction: (S newSelf) -> UFunction<T1, T2, ..., Tn, R> {

return { (: T1 t1, T2 t2, ..., Tn tn -> R :)

// body of the context function with

// self replaced by newSelf

...

}

}

end

For example, from the context function of the code

var Int i = 0;

var b = { (: Box self :) Out println: (%i + get) };

(b bindToFunction: Box) eval;

the compiler creates a regular object

object ContextObject001(Int i)

implements ContextFunction<Box, Nil>

fun bindToFunction: Box -> UFunction<Nil>

return {

Out println: (i + (newSelf get));

}

}

end

And

var b = { (: Box self :) Out println: (%i + get) };

becomes

var b = ContextObject001(i);

A context function with multiple selectors is a context function with multiple eval: selectors:

{ (: S self, eval: T11 t11, ... T1n t1n eval: T21 t21, ... T2m t2m,

... eval: ... Tkp tkp -> R :)

...

}

The type of this context function is

5Chapter 11 define context objects, which are a generalization of functions.
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interface ContextFunction<S, T11, ..., T1n><T21, ... T2m>...<Tk1, ... Tkp, R>

fun bindToFunction: S -> UFunction<T11, ..., T1n><T21, ... T2m>...<Tk1, ... Tkp, R>

end

The UFunction returned by bindToFunction: is defined in Section 10.7. The type of a context function
with multiple selectors that does not return a value is defined similarly.

In what follows, we will specify the checks made when calling addMethod: to add a method with a
single selector. In a call

obj addMethod:

selector: sel

param: T1 param: T2 ... param: Tn

returnType: R

body: expr

metaobject checkAddMethod checks whether:

(a) the parameters to all selectors of addMethod: ... but body: are literals;

(b) the selector sel is a valid method name;

(c) the selector sel ends with “:” if n > 0;

(d) the selector sel does not end with “:” if n == 0;

(e) the type of expr is subtype of ContextFunction<S, T1, T2, ..., Tn, R> in which S is supertype
of typeof(obj) (the compile-time type of obj).

Even with these checkings there may be an error when the method addMethod: ... is called. For
example, obj may refer to a B object although typeof(obj) is A. There is a final method sel in B that
is not defined in A. The metaobject cannot detect that a final method is being changed. In case of error,
method addMethod: ... throws exception ExceptionAddMethod.

It is possible that in future versions of Cyan all checking be postponed to runtime. At least if some
of the parameters are not literals.

Let us see an example of use of context functions.

var myContextFunction = { (: Box self, Int p -> Int :) ^get + p };

Box set: 5;

var Function<Int, Int> b = myContextFunction bindToFunction: Box

assert: (b eval: 3) == 8;

var anotherBox = Box new;

anotherBox set: 1;

b = myContextFunction bindToFunction: anotherBox;

assert: (b eval: 3) == 4;

In one of the examples given above, a print method is added to prototype Box through addMethod:

.... When this grammar method is called at runtime, method print will be added to all instances of
Box that have been created and that will created afterwards. However, if an instance of Box has added
another print method, it is not affected:

var myBox = Box new;

myBox set: 10;

myBox addMethod:
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selector: #print

body: { (: Box self :) Out println: "value = #{get}" };

Box addMethod:

selector: #print

body: { (: Box self :) Out println: get };

// will print "value = 10" and not just "10"

myBox print;

Another method that takes a parameter and returns a value can be added to Box:

Box addMethod:

selector: #returnSum

param: Int

returnType: Int

body: { (: Box self, Int p -> Int :) ^get + p };

The metaobject attached to this grammar method checks whether the number of selectors (one), the
parameter type, and the return value type matches the context function. It does in this case.

var myBox = Box new;

myBox set: 5;

assert (myBox ?returnSum: 3) == 8;

As another example, one can add methods to change the color of a shape:

object Shape

public Int color

public abstract fun draw

...

end

...

var colors = {# "blue", "red", "yellow", "white", "black" #};

// assume that hexadecimal integer numbers can

// be given in this way

var colorNumbers = {# ff_Hex, ff0000_Hex, ffff00_Hex, ffffff_Hex, 0 #};

var i = 0;

colors foreach: {

(: String elem :)

Shape addMethod:

selector: elem

body: { (: Shape self :) color: colorNumbers[i] };

++i;

};

Methods blue, red, yellow, white, and black are added to Shape. So we can write

var Shape myShape;

...

myShape ?blue;

// draws in blue

myShape draw;

myShape ?red;
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// draws in red

myShape draw;

// Square is a sub-object of Shape

var Square sqr = Square new;

...

sqr ?black;

// draws in black

sqr draw;

Assume that draw of sub-prototypes use the color defined in Shape.
We could have got the same result as above by adding all of these methods to Shape textually. For

example, method blue would be

fun blue { color: ff_Hex }

Regular objects may be used as parameters to selector body:.

object PrintBox

implements ContextFunction<Box, Nil>

fun bindToFunction: (Box newSelf) -> UFunction<Nil> {

return { Out println: (newSelf get) }

}

end

This object is added to Box as usual:

Box addMethod:

selector: #print

body: PrintBox;

There could be libraries of context objects that implement methods that could be added to several
different prototypes. For example, there could be a Sort context object to sort any object that implements
an interface

interface Indexable<T>

fun at: Int -> Int

fun at: Int put: T

fun size -> Int

end

A context object used to add a method to an object could have more methods than just bindToFunction:.

object PrintFormatedBox

implements ContextFunction<Box, Nil>

fun bindToFunction: (Box newSelf) -> UFunction<Nil> {

return { Out println: (format: (newSelf get)) }

}

/* one could declare a context function

with one more method like format:

this method fills the first positions

with 0. Then
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format: 123

should produce "0000000123"

*/

private fun format: (Int n) -> String {

var strn = (n asString);

return ("0000000000" trim: (10 - strn size)) + str

}

end

format: is a method that can only be used by the method print that is added to Box. It is like a private
method of print.

Suppose you want to replace a method by a context function that calls the original method after
printing a message. Using the Box prototype, we would like something like this:

object Box

fun get -> Int { return value }

fun set: (Int other) { value = other }

Int value = 0

end

...

Box set: 0;

Box addMethod:

selector: #get

returnType: Int

body: { (: Box self :)

Out println: "getting ’value’";

self get

};

It is a pity this does not work. In a call “Box get” made after the call to addMethod: ..., the context
function will be called. It prints

getting ’value’

as expected but them it calls get, which is a recursive call. There is an infinity loop. What we would
like is to call the original get method. That cannot be currently achieved in Cyan. However, it will
be possible if context functions are transformed into “literal dynamic mixins” (LDM) or “literal runtime
metaobjects” (LRM). This feature is not yet supported by Cyan. But the description of it would be as
follows.

The syntax of LRM’s would be the same as that of context functions except that “super” could be
used as receiver of messages. Calls to super are calls to the original object. Then the code above can be
written as

Box set: 0;

Box addMethod:

selector: #get

returnType: Int

body: { (: Box self :)

Out println: "getting ’value’";

super get

};
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In this way a call “Box get” would print “getting ’value’” and the original get method would be
called. Exactly what we wanted.

We are unaware of any language that allows literal runtime metaobjects. That would be one more
innovation of Cyan.

This feature has not been introduced into Cyan because:

(a) it seems to be difficult to implement (which may not be a good reason). The compiler being built
generates Java code and literal runtime metaobjects probably demand code generation at runtime,
which would be difficult with Java (although not impossible);

(b) there are some questions on what is the type of a LDM/LRM. This is the same question of “what is
the type of a mixin prototype?”.

10.12 Implementing r-Functions as u-Functions

There is a way of implementing every function as an u-function. It is only necessary to allocate all local
variables used in functions in the heap. That is, not only the objects the local variables refer to are
dynamically allocated. Space for the variables should also be put in the heap. Usually local variables are
put in the stack. Then if local variable n of type Int is used inside a function, n will refer to an object
that has a reference to an integer. There will be a double indirection. We will explain how to allocate
variables in the heap using an example.

var Int n;

n = 0;

var Int k;

k = n;

assert: (n == 0);

var b = { ++n };

b eval;

assert: (n == 1);

Since Cyan is targeted to the Java Virtual Machine, we will show the translation of this code to Java.

IntBox n = new IntBox();

n.value = 0;

int k;

k = n.value;

assert(n == 0);

Closure00001 b = new Closure00001(n);

b.eval(); // ++b.n.value

assert(n == 1);

IntBox is just a box for an int value. It is this class that implements the double indirection.

class IntBox {

public int value;

}

Each function such as ++n is translated to a Java class with an eval method:
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// { ++n }

class Function00001 {

public Function00001(IntBox n) { this.n = n; }

public void eval() { ++n.value; }

IntBox n;

}

The assignment k = n is translated into k = n.value since to k is assigned the integer value of n. The
Java class generated by ++n contains an object of IntBox. Its instance variable n represents the variable
n used inside the function, which should be a mirror of the local variable n. This is achieved by declaring
both variables, the instance and the local variable, as objects of IntBox. Both variables refer to the
same IntBox object. Changes in the value of the n variable in the Cyan code, be it the local variable or
the instance variable, are translated as changes in the attribute value of this IntBox object. Since the
IntBox variable is referred to by both variables, changes in it are seen by both variables.

Using this kind of function implementation, there would not be any runtime error in returning a
function that accesses a local variable:

fun canWithdraw -> Function<Float, Boolean> {

var limit = getLimit;

return { (: Float amount :) ^amount < limit }

}

Since several functions would access the same variable, unusual objects can be dynamically created:

...

// n is a local Int variable

var Int n = 0;

var h = Hashtable<String, Function<Nil>> key: "inc" value: { ++n }

key: "dec" value: { --n }

key: "show" value: { Out println: n };

h["inc"] eval;

assert: (n == 1);

h["inc"] eval;

assert: (n == 2);

h["sub"] eval;

// prints 1

h["show"] eval;

The only disadvantage of allocating local variables accessed by functions in the heap would be effi-
ciency. But in most cases in which functions are used the compiler could optimize the code. Most of
the time functions are passed as parameters to methods of objects Boolean or to methods of another
functions (such as whileTrue:), which do not keep any references to them. Therefore in all of these
common cases the compiler would not allocate local variables in the heap.

The Cyan compiler will generate Java code. This language does not support pointers to local variables,
which are needed in order to efficiently implement functions in Cyan. Neither do the Java Virtual Machine.
Therefore the Cyan compiler will allocate in the heap, as shown above, all local variables accessed in
functions without %. Unfortunately.
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Chapter 11

Context Objects

A Cyan function becomes a closure at runtime for it can access variables from its context as in the
example:

// sum the vector elements

var sum = 0;

v foreach: { (: Int x :) sum += x };

Here the sum of the elements of vector v is put in variable sum. But sum is not a local variable or
parameter of the function. It was taken from the environment. Then to use a function it is necessary to
bind (close over) the free variables to some variables that are visible at the function declaration. self is
visible in the function and messages can be sent to it:

v foreach: { (: Int x :) sum += self calc: x };

Although functions are tremendously useful, they cannot be reused because they are literal objects.
A function that accesses local and instance variables is specific to a location in the source code in which
those variables are visible. Even if the programmer copy-and-past the function source code it may need
to be modified because the variable names in the target environment may be different. A generalization
of functions would make the free variables and the message sends to self explicit. That is what context
objects do.

In Cyan it is possible to define a context object with free variables that can be bounded to produce a
workable object. For example, the context object

object Sum( Int &sum ) extends Function<Int, Nil>

fun eval: (Int x) {

sum += x

}

end

defines method eval: and uses a free Int variable sum. A message send

Sum eval: 5;

would use a compiler-initialized variable sum (default value 0). However, since it is a private variable,
there would be no way of retrieving its value.

A context object cannot define any init, init:, new, new:, or clone methods. The only way of
creating a context object is by using a new: method created by the compiler (this will soon be explained).

A free variable of a context object such as Sum can be bounded by method bind. The free variables
should be given as parameters:
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var Array<Int> v = {# 1, 2, 3 #};

...

var Int s = 0;

// binds sum of Sum to local variable s

Sum bind: s;

v foreach: Sum;

assert: (s == 6);

or

var v = {# 1, 2, 3 #};

var Int s = 0;

v foreach: Sum(s);

assert: (s == 6);

The syntax Sum(s) means the same as
(Sum new: s)

which is the creation of an object from Sum passing s as a parameter. However, this is not a regular
parameter passing — it is passing by reference as we will soon discover.

When the type of a context object parameter is preceded by &, the real argument should be a local
variable. It cannot be a parameter of the current method or an instance variable.

11.1 Using Instance Variables as Parameters to Context Objects

In the last example, the free variables passed as parameters should be local variables of the method.
They cannot be instance variables. Instance variables can only be passed as parameters if the parameter
is prefixed with *.

object Sum(Int *sum) extends Function<Int, Nil>

fun eval: (Int x) {

sum += x

}

end

object Test

fun totalSum: (Array<Int> array ) {

array foreach: Sum(total)

}

fun getTotal -> Int { ^total }

Int total

end

The next example shows object IntSet and context object ForEach. This last one works as an “inner
class” or a “nested class” of the former. Whenever method getIter of an object Obj of type IntSet is
called, it returns a new object ForEach that keeps a reference to the instance variable intArray of Obj.

object ForEach(Array<Int> *array) implements Iterable<Int>

fun foreach: (Function<Int, Nil> b) {

0 ..< (array size) foreach: {

(: Int index :)
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b eval: array[index]

}

}

end

// a set of integers

object IntSet

fun init {

intArray = Array<Int> new

}

fun getIter -> ForEach {

^ForEach(intArray)

}

// methods to add, remove, etc.

Array<Int> intArray

end

One could write

var set = IntSet new;

set add: 0 add: 1 add: 2;

var iter = set getIter;

iter foreach: {

(: Int elem :)

Out println: elem + " "

};

11.2 Passing Parameters by Copy

As with functions, it is possible to use % to mean “a copy of the value of s”. However, % should be put
only before the parameter.

object DoNotSum(Int %sum)

fun eval: (Int x) {

sum = sum + x

}

end

...

var Int s = 0;

v foreach: DoNotSum(s);

assert: (s == 0);

Here a copy of the value of s, 0, is passed as a parameter to the context object. This “parameter” is then
changed. But the value of the original variable s remains unchanged. Parameters whose type is preceded
by % will be called “copy or % parameters”. Parameters whose type is preceded by * are the “instance
variable parameters” or * parameters. The ones preceded by & will be called “reference parameters” or
& parameters.

A context object with a copy parameter may have any expression as real argument:
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v foreach: DoNotSum(0);

{# 0, 1, 2 #} foreach: DoNotSum(Math fatorial: 5);

Therefore, method parameters can be real arguments to DoNotSum. If no symbol is put before the
parameter type of a context object, it is assumed that it is a copy parameter.

11.3 What the Compiler Does With Context Objects

The context object Sum is transformed by the compiler into a prototype

object Sum extends Function<Int, Nil>

@prototypeCallOnly

fun new: (Int &sum) -> Sum {

var newSum = self primitiveNew;

newSum bind: sum;

return newSum

}

public bind: (Int &sum) {

self.sum = sum

}

Int &sum

fun eval: (Int x) {

sum += x

}

end

Symbol & put before a parameter means that the type of it is a “reference type”. It is the same concept
as a pointer to a type in language C. To make Cyan type-safe, reference types can only be used in the
declaration of parameters of context objects. But the compiler can use them as in the production of
the above Sum prototype from the original Sum context object. By restricting the way reference types
are used, the language guarantees that no runtime type error will ever happen due to a reference to a
variable that is no longer in memory. In language C, one of these errors would be

int *f() { int n; return &n; }

void main() {

printf("%d\n", *f());

}

A local variable n which is no longer in the stack would be referenced by expression “*f()”.
We can use Sum(s) to call the new: method of prototype Sum built by the compiler, as usual (See

page 74). The compiler will take the code of prototype DoNotSum and transform it internally in the
following object:

object DoNotSum

@prototypeCallOnly

fun new: (Int sum) -> DoNotSum {

var newSum = self primitiveNew;

newSum bind: sum;

return newSum

}

fun bind: (Int sum) {
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self.sum = sum

}

var Int sum

fun eval: (Int x) {

sum += x

}

end

An instance variable parameter is transformed by the compiler, internally, into two variables: a
reference to the variable and a reference to the object in which it is. So prototype ForEach will be
transformed into

object ForEach

@prototypeCallOnly

fun new: (Array<Int> &array, Any otherSelf) -> ForEach {

var newObj = self primitiveNew;

newObj bind: array;

self.otherSelf = otherSelf;

return newObj

}

@checkSelfBind fun bind: (Array<Int> &array, Any otherSelf) {

self.array = array;

self.otherSelf = otherSelf;

}

Array<Int> &array

Any otherSelf

fun foreach: (Function<Int, Nil> b) {

0..< (array size) foreach: {

(: Int index :)

b eval: array[index]

}

}

end

An expression
ForEach(intArray)

is transformed internally by the compiler into
ForEach(intArray, self)

It is necessary to pass self as parameter in order to prevent the garbage collector to free the memory
of the object while there is a pointer to one of its instance variables, intArray. If self is not passed
as parameter, they may be the case that an object of ForEach has a reference to an instance variable
intArray of a IntSet object and there is no other reference to this object. Then the garbage collector
could free the memory allocated to this object.

Metaobject checkSelfBind checks, in this example, whether the second real argument to bind: is
self. There would be a compiler error if it is not:

var f = ForEach bind: intArray, 0

0 is a subtype of Any. But it is not self.
Object ForEach could have been implemented as a regular object because:
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(a) instance variable intArray of IntSet always refer to the same object. Therefore intArray could be
passed by copy to ForEach;

(b) ForEach does not assign a new object to intArray.

A copy or % parameter of a context object may be preceded by keywords public, protected, or
private to mean that the parameter should be declared as an instance variable with that qualification.

// prod is also a copy parameter

object Test(public Int sum, protected Int prod) extends Function<Int, Nil>

fun eval: (Int elem) {

sum = sum + elem;

prod = prod*elem

}

fun getProd -> Int { ^prod }

end

...

var s = 0;

var p = 1;

{# 1, 2, 3 #} foreach: Test(s, p);

// call to public method sum

Out println: "Sum is #{Test sum}";

Out println: "Product is #{Test getProd}";

...

The default qualifier is private. Prototype Test would be transformed by the compiler into

object Test extends Function<Int, Nil>

@prototypeCallOnly

fun new: (Int sum, Int prod) -> Test {

var newText = primitiveNew;

newText bind: sum, prod;

return newText

}

public bind: (Int sum, Int prod) {

self.sum = sum;

self.prod = prod

}

fun eval: (Int elem) {

sum = sum + elem;

prod = prod*elem

}

fun getProd -> Int { ^prod }

public Int sum

protected Int prod

end

Reference (&) and instance variable (*) parameters are always private.
A context object that only has copy parameters is a regular prototype. There is just one difference:

the compiler adds an new: method with the parameters of the context object. This method initializes
the instance variables that have the same name as the parameters. See the DoNotSum example above.
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11.4 Type Checking Context Objects

There are two kinds of context objects:

(a) the ones with at least one reference parameter such as Sum. These are called restricted context objects,
r-co for short;

(b) the ones with no reference parameter. These have one or more instance variable or copy parameters
(with * or %). These are called unrestricted context objects, u-co for short.

There is no restriction on the use of unrestricted context objects (as expected!). They can be types
of variables, instance variables, return values, and parameters. u-co are a generalization of u-functions.

Restricted context objects are a generalization of r-functions. Both suffer from the same problem: a
context object could refer to a dead local variable:

var Sum mySum;

var b = {

var Int sum1 = 0;

mySum = Sum(sum1);

};

b eval;

mySum eval: 1;

The message send “b eval” makes mySum refer to a context object that has a reference to sum1. In the
last message send, “mySum eval: 1”, there is an access to sum1, which no longer exists.

Another error would be to return a r-co from a method:

object Program

fun run {

{# 1, 2, 3 #} foreach: makeError

}

fun makeError -> Sum {

var sum = 0;

return Sum(sum);

}

Here Sum(sum) has a reference to a local variable sum. When foreach: calls method eval: of the object
Sum(sum), variable sum is accessed causing a runtime error.

To prevent this kind of error, r-co have exactly the same set of restrictions as r-functions. In particular,
the compiler would point an error in the assignment “mySum = Sum(sum1)” of the example above.

A context object that does not inherit from anyone inherits from Any, as usual. Both r-co´s and
u-co´s can inherit from any prototype and implement any interface. However, there are restrictions on
assignments mixining restricted and unrestricted types. A r-co RCO that inherits from an unrestricted
prototype P or implements an unrestricted interface I is not considered a subtype of P or I. That is, if p
is a variable of type P or I, an assignment

p = RCO;

is illegal.
Apart from the rules for type checking, context objects are regular objects. For example, they

may be abstract, have shared variables, and inherit from other prototypes. Inheritance demands some
explanations. When a context object with an instance variable or reference parameter x is inherited by
another context object, this last one should declare x in its list of parameters with the same symbol
preceding the parameter (% or &) as the super-prototype. x should precede the parameters defined only
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in the sub-prototype. After the keyword “extends” there should appear the super-prototype with its
parameters.

object A(Int &x)

...

end

object B(Int &x, Int %y, String &z) extends A(x)

...

end

Since A is a r-co, B is a r-co too. A context object cannot be inherited by a regular prototype.
Note that context objects that use only copy parameters are regular prototypes. Therefore sub-

prototypes need not to obey the rules given above. The sub-prototype does not even need to be a context
prototype.

A context object can also be a generic object. Sum can be generalized:

object Sum<T>(T &sum) extends Function<T, Nil>

fun eval: (T x) {

sum = sum + x

}

end

...

var intSum = 0;

var Float floatSum = 0;

var String abc = "";

{# 1, 2, 3 #} foreach: Sum<Int>(intSum);

{# 1.5, 2.5, 1 #} foreach: Sum<Float>(floatSum);

{# "a", "b", "c" #} foreach: Sum<String>(abc);

assert: (floatSum == 5);

assert: (intSum == 6);

assert: (abc == "abc");

11.5 Adding Context Objects to Prototypes

Section 10.11 explain how to use the addMethod: ... grammar method of Any to add methods to a
prototype.

fun (addMethod:

(selector: String ( param: (Any)+ )?

)+

(returnType: Any)?

body: Any)

A context object can be used instead of a context function. One has just to extends the appropriate
ContextObject prototype.

object Car

fun addDoorColor {

leftDoor addMethod:
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selector: #getColor

returnType: Int

body: GetColor(color);

leftDoor addMethod:

selector: #setColor

param: Int

body: SetColor(color);

}

...

public Door leftDoor, rightDoor

Int color

end

object GetColor(Int *color)

implements ContextFunction<Door, Int>

fun bindToFunction: (Door newSelf) -> UFunction<Int> {

return { ^color }

}

end

object SetColor(Int *color)

implements ContextFunction<Door, Int, Nil>

fun bindToFunction: (Door newSelf) -> UFunction<Int, Nil> {

return { (: Int newColor :) color = newColor }

}

end

After
Car addDoorColor

the left door will share a color with the car. Changes in one will reflect in the other.

11.6 Passing Parameters by Reference

Some languages such as C++ support passing of parameters by reference. In this case, changes in the
parameter are reflected in the real argument, which should be a variable (it cannot be an expression).
Cyan does not support directly this construct. However, it can be implemented using the generic context
object Ref:

object Ref<T>(T &v)

fun value -> T { ^v }

fun value: (T newValue) { v = newValue }

end

Now if you want to pass a parameter by reference, use Ref:

private object CalcArea

// it is as if parameter to selector area: were by reference

fun squareSide: (Float side) area: (Ref<Float> refSqrArea) {
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// by calling method value: we are changing the parameter

// of the context object

refSqrArea value: side*side

}

end

public object Program

fun run {

var side = In readFloat;

var Float sqrArea;

/* encapsulate the reference parameter inside a

context object. That is, use "Ref<Float>(sqrArea)"

instead of just "sqrArea".

Local variable "sqrArea" is changed inside

method squareSide:area: of prototype CalcArea when message

value: is sent to refSqrArea

*/

CalcArea squareSide: side area: Ref<Float>(sqrArea);

Out println: "Square side = #side";

Out println: "area = #sqrArea"

}

end

Of course, the “passing by reference” syntax in Cyan is not straightforward. However, it has two advan-
tages:

(a) it does not need a special syntax;

(b) and, most importantly, it is type-safe. Context objects use the same rules as the static functions
of Cyan. That means, for example, that an instance variable of prototype Calc cannot refer to a
parameter of type Ref<Float>. That guarantees there will never be a reference to local variable of
run of Program after this method is removed from the stack.

There will never be an error in Cyan equivalent to the following error in a C program, in which pointer
mistake refers to a local variable that has been removed from the stack.

#include <stdio.h>

const float pi = 3.141592;

float *mistake;

void calc(float radius, float *area) {

mistake = area;

*area = pi*radius*radius;

}

void run() {

float area;

calc(1, &amp;area);
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}

float useStack() { float ten = 10; return area; }

int main() {

run();

useStack();

// mistake refers to a variable that has been

// removed from the stack

// 10 is printed in some compilers

printf("%f\n", *mistake);

return 0;

}

11.7 Should Context Objects be User-Defined?

An alternative definition of Cyan could get rid of context objects. They could not be defined as shown
in this text. Instead, one could use reference types like &Int to declare a restricted prototype directly.
So the programmer could define a prototype like

object Sum extends Function<Nil, Int>

fun new: (Int &sum) -> Sum {

var newSum = self primitiveNew;

newSum bind: sum;

return newSum

}

public bind: (Int &sum) {

self.sum = sum

}

Int &sum

fun eval: (Int x) {

sum += x

}

end

This new version of Cyan would have a concept called “restricted type” defined inductively as:

(a) a reference type is a restricted type;

(b) any prototype that declares an instance variable of a restricted type is a reference type.

All the restriction on the use and type checking defined nowadays for context objects would apply to
reference types.

With this feature, the programmer herself would explicitly create her own context objects. And this
alternative Cyan would solve a problem related to grammar methods presented at the end of Chapter 9.9
at page 177. The solution comes from the fact that an array of a reference type would be a reference
type too. Idem for tuples and unions: Array<Function<Int>>, Tuple<String, Function<Nil>>, and

Tuple<Int, Union<Function<Int, Char>, Char>, String>

would be reference types.

11.8 More Examples

The example of trees of page 74 can be made even more compact with context objects:
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object Tree

end

object BinTree(public Tree left, public Int value, public Tree right) extends Tree

end

object No(public Int value) extends Tree

end

...

var tree = BinTree( No(-1), 0, BinTree(No(1), 2, No(3)) );

Out println: ((tree left) value);

When the compiler finds a class like BinTree, it creates a regular class with public instance variables
left, value, and right:

object BinTree extends Tree

@prototypeCallOnly

fun new: (Tree left, Int value, Tree right) -> BinTree {

var newObj = self primitiveNew;

newObj bind: left, value, right;

return newObj

}

public bind: (Tree left, Int value, Tree right) {

self.left = left;

self.value = value;

self.right = right;

}

public Tree left

public Tree value

public Tree right

end

Suppose there is a sport Car prototype that has two doors, left and right. The colors of these doors
should always be the same as the main color of the car. One way of assuring that is declaring in the
CarDoor prototype an instance variable that is a reference (a C-language pointer) to the instance variable
of the Car that keeps the color. Since Cyan does not have C-like pointers, we can use context objects.

object CarDoor(public Int *color)

...

end

object Car

fun init {

leftDoor = CarDoor(_color);

rightDoor = CarDoor(_color);

}

fun color: (Int newColor) { _color = newColor }

fun color -> Int { ^ _color }

Int _color
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public CarDoor leftDoor, rightDoor

end

...

Car color: 255;

// prints "color = 255"

Out println: "color = #{(Car leftDoor) color}";

(Car rightDoor) color: 0;

// prints "color = 0"

Out println: "color = #{Car color}";

inject:into: methods in Smalltalk are used to accumulate a result over a loop. For example,
var sum = (1 to: 10) inject: 0 into: { (: Int total, Int elem :) total + elem }

accumulates the sum from 1 to 10. Initially total receives 0, the argument to the selector inject:. Then
the function is called passing total and the current index (from 1 to 10). In each step, the value returned
from the function, total + elem, is assigned to total (Smalltalk returns the last block expression).

The basic types of Cyan support a Smalltalk-like inject method and another form made to be used
with context objects.

object InjectInto<T>(T %total) extends InjectObject<T>

fun eval: (T elem) {

total = total + elem

}

fun result -> T {

^total

}

end

Now the total is kept in the context object and we can write

var inj = InjectInto<Int>(0);

1 to: 10 do: inj;

Out println: "Sum = #{inj result}";

print the sum of the numbers from 1 to 10.
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Chapter 12

The Exception Handling System

Exception handling systems (EHS) allow the signalling and handling of errors or abnormal situations.
There is a separation from the detection of the error and its treatment which can be in different methods
or modules. The exception handling systems of almost all object-oriented languages are very similar. An
exception is thrown by a statement such as “throw e” or “raise e” and caught by one or more catch
clauses. We will show an example in Java. Assume there is a MyFile class with methods for opening,
reading and closing a file and that methods open and readCharArray of this class may throw exceptions
ExceptionOpen and ExceptionRead.

1 char []charArray;

2 MyFile f = new MyFile("input.txt");

3 try {

4 f.open();

5 charArray = f.readCharArray();

6 if ( charArray.length == 0 )

7 throw new ExceptionZero();

8 } catch ( ExceptionOpen e ) {

9 System.out.println("Error opening file");

10 }

11 catch ( ExceptionRead e ) {

12 System.out.println("Error reading file");

13 }

14 finally {

15 f.close();

16 }

An exception is thrown by statement throw (see line 7). We can also say that an error is signalled by a
throw statement. The class of the object following throw should be a direct or indirect subclass of class
Throwable. In this example, all statements that can throw exceptions are put in a try block (which is
between lines 4 and 7). The exceptions thrown inside the try block at runtime will be treated by the
catch clauses that follow the try block. There are two catch clauses and one finally clause. Each catch
clause accepts a parameter and treats the error associated to that parameter. Therefore

catch ( ExceptionOpen e ) { ... }

will treat the error associated to the operation of opening a file.
If file f cannot be read, method readCharArray throws exception ExceptionRead with a statement

throw new ExceptionRead(filename);

After that, the runtime system starts a search for an appropriate handler for this exception. A handler
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is a piece of code, given in a catch clause, that can treat the exception. This search starts in method
readCharArray which does not have any catch clauses. It continues in the stack of called methods.
Therefore an appropriate handler (or catch clause) is looked for in the code above. The runtime system
checks whether the first catch clause can accept an object of ExceptionRead, the one thrown by the
throw statement. It cannot. Then it checks whether the second catch clause can accept this object as
parameter. Tt can. Then method readCharArray is terminated and control is transferred to the catch
clause

catch ( ExceptionRead e ) {

System.out.println("Error reading file");

}

Parameter e receives the object “new ExceptionRead(filename)” which was the parameter to statement
throw and the body of the clause is executed. After that the execution continues in the finally clause,
which is always executed — it does not matter whether an exception is thrown or not in the try block.
When an exception is thrown, the stack of called methods is unwound till an appropriated catch clause
is found and the control is transferred to this catch clause.

The exception handling system (EHS) of Cyan is similar in several aspects of the model just described.
However, it was based on the object-oriented exception handling system of Green [dOGaa] and it is
object-oriented in nature. The throwing of an exception is a message send, exception treatment(catch
clauses) can be put in prototypes and inherited, and polymorphism applies to exception treatment. All
the arsenal of object-oriented programming can be used with exception signalling and treatment, which
is not possible possible, to our knowledge, in other languages but Green. The exception handling system
(EHS) of Cyan goes well beyond that of Green which is awkward to use if local variables should be
accessed to treat the error. In Cyan the EHS is both easy to use and powerful. However, it is not a
checked exception system like that of Java or Green. An exception may be thrown and not caught as in
C++ or C#.

The Java example in Cyan would be

1 var Array<Char> charArray;

2 var f = MyFile new: "input.txt";

3 {

4 f open;

5 charArray = f readCharArray;

6 if charArray size == 0 {

7 throw: ExceptionZero

8 }

9 } catch: { (: ExceptionOpen e :) Out println: "Error opening file" }

10 catch: { (: ExceptionRead e :) Out println: "Error reading file" }

11 finally: {

12 f close

13 }

An exception is thrown by sending message throw: to self as in line 7:

throw: ExceptionZero;

throw: is a final method defined in Any (therefore inherited by all prototypes). ExceptionZero is a
prototype that inherits from CyException, the super-prototype of all exception objects. Since this
exception does not demand any useful additional information, the prototype does not have any instance
variables:
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object ExceptionZero extends CyException

end

Every exception prototype should inherit from CyException, which inherits from Any and does not define
any methods.

In the above Cyan example, function
{ f open; charArray = ... }

receives message
catch: ... catch: ... finally: { f close }

at runtime. The method executed will be a grammar method (more about that will soon be explained).
This method calls the function body (sends message eval to it) and catches the exceptions it throws.
That is almost the same as in the Java code. When an exception is thrown in the function body, as
ExceptionRead, the runtime system searches for an adequate handler in the parameters to the catch:

methods. First it checks whether method eval: of the first function,
{ (: ExceptionOpen e :) Out println: "Error opening file" }

can accept an object of ExceptionRead as real argument. It cannot. Then the search continues in the
second catch: selector. Since

{ (: ExceptionRead e :) Out println: "Error reading file" }

can accept a ExceptionRead object, message eval is sent to this function. Then the function that is
parameter to finally: is called and the execution continues in the first statement after the original
function. This works exactly the same as the exception system of Java/C++ and many other object-
oriented languages. In Cyan there may be one or more catch: selectors and an optional finally:

selector. Every catch: selector accepts as argument an object that has at least one method
eval: (E e)

in which E is a prototype that inherits from CyException (directly or indirectly). Functions

{ (: ExceptionOpen e :) Out println: "Error opening file" }

{ (: ExceptionRead e :) Out println: "Error reading file" }

satisfy these requirements. For example, the first function has a method
eval: (ExceptionOpen e) { Out println: "Error opening file" }

It is not necessary that E be a function or be a sub-prototype of any function. The catch: selectors
may receive an r-function as parameter. This does not cause any runtime errors because the method
neither store a reference to the object that is the real argument nor passes a reference to this object to
another method.

The parameter to method throw: should not be a restricted context object. That is checked by
metaobject checkThrow attached to this method. If a restricted context object is parameter to throw:,
a runtime error could occur:

object ExceptionContext(public Int &number) extends CyException

end

object Test

fun run {

{

test

} catch: { (: ExceptionContext e :)

// "number" refer to "n" which does not

// exist anymore
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Out println: (e number)

}

}

fun test {

var n = 0;

throw: ExceptionContext(n)

}

end

12.1 Using Regular Objects to Treat Exceptions

Each catch: selector may receive as argument an object that has more than one eval: method.

object ExceptionCatchFile

fun eval: (ExceptionOpen e) { Out println "Error opening file" }

fun eval: (ExceptionRead e) { Out println "Error reading file" }

fun eval: (ExceptionWrite e) { Out println "Error writing to file" }

end

Prototype ExceptionCatchFile treats all errors associated to opening, reading, and writing to files (but
not to closing a file). This kind of object, to treat exceptions, will be called catch objects. It can be used
as

var Array<Char> charArray;

var f = MyFile new: "input.txt";

{

f open;

charArray = f readCharArray;

if charArray size == 0 {

throw: ExceptionZero

}

} catch: ExceptionCatchFile

finally: {

f close

}

When an exception is signaled in the function, the runtime system starts a search for an eval: method
(a handler) in the nearest argument to catch:, which is ExceptionCatchFile. Supposing that there
was a read error, the correct eval: method should accept a ExceptionRead object as parameter. The
runtime system searches for the eval: method in ExceptionCatchFile using the same algorithm used
for searching for a method after a message is send to an object. That is, the runtime system tries to
send message eval: with a ExceptionRead as argument to object ExceptionCatchFile. By the regular
algorithm, the second textually declared method of ExceptionCatchFile,

fun eval: (ExceptionRead e) { Out println "Error reading file" }

is found and called. After that the function that is argument to selector finally: is called and compu-
tation continues in the first statement after the outer function in the example.
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12.2 Selecting an eval Method for Exception Treatment

A Cyan program starts its execution in a method called run of a prototype designed at compile-time.
For this example, suppose this prototype is Program. To start the execution, method run is called inside
a function that receives a catch: message:

{

Program run: args

} catch: RuntimeCatch;

Method eval: of prototype RuntimeCatch just prints the stack of called methods:

object RuntimeCatch

fun eval: (CyException e) {

/* prints the stack of called methods and ends the program

*/

}

...

end

Maybe we may will add a finally: selector to the catch: message allowing some code to be executed
before the program ends.

When a message with at least one catch: selector is sent to a function, a grammar method is called.
We will call this grammar method catch-finally (this is just a name for explaining this text). Method
catch-finally pushes the parameters to catch: in a stack CatchStack in the reverse order in which
they appear in the call. So

{

...

} catch: c1

catch: c2

catch: c3;

pushes c3, c2, and c1 into the stack, in this order. Therefore c1 is in the top. When an exception is
thrown by the message send throw: obj, method throw: of Any searches the stack CatchStack from
top to bottom until it finds an eval: method that accepts obj as parameter. Inside each stack object the
search is made from the first declared eval: method (in textual order) to the last one. CatchStack is a
prototype that just implements a stack. It cannot be changed by regular programming. But programmers
will be able to inspect its contents:

object CatchStack

public fun asArray -> Array<Any> { ^stack clone }

private fun push: (Any catchObj) { ... }

private fun pop -> Boolean { ... }

...

var Array<Any> stack

end

Consider the catch objects1 and the example that follow.

// number < 0, == 0, > 1000, or even

private object ExceptionNum extends CyException

1Objects with eval: methods that treat exceptions.
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end

// when the number is == 0

private object ExceptionZero extends ExceptionNum

end

// when the number is < 0

private object ExceptionNeg extends ExceptionNum

end

// when the number is > 1000

private object ExceptionBig extends ExceptionNum

end

// when the number is even

private object ExceptionEven extends ExceptionNum

end

private object CatchZeroBig

fun eval: (ExceptionZero e) {

Out println: "zero number";

}

fun eval: (ExceptionBig e) {

Out println: "big number";

}

end

private object CatchNeg

fun eval: (ExceptionNeg e) {

Out println: "negative number";

}

end

private object CatchEven

fun eval: (ExceptionEven e) {

Out println: "even number";

}

end

private object CatchNum

fun eval: (ExceptionNum e) {

Out println: "number < 0, == 0, > 1000, or even";

}

end

object Program

const Int MaxN = 1000
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fun run: Array<String> args {

// 1

var n = In readInt;

{ // 2

process: n

} catch: CatchZeroBig

catch: CatchEven

catch: CatchNum;

// 5

Out println: "this is the end"

}

private fun process: (Int n) {

{ // 3

check: n;

if n > MaxN {

throw: ExceptionBig

}

} catch: CatchNeg

// 6

}

private fun check: (Int n) {

// 4

if n == 0 {

throw: ExceptionZero

};

if n < 0 {

throw: ExceptionNeg

};

if n%2 == 0 {

throw: ExceptionEven

}

}

end

There are four exceptions, ExceptionZero, ExceptionNeg, ExceptionBig, and ExceptionEven that
inherit from ExceptionNum and four catch objects, CatchZeroBig, CatchEven, CatchNeg, and CatchNum.
The program execution starts at point “// 1”. At line // 2, message catch:catch:catch: has been
send and the function that has just “process: n” has been called. At point // 2, CatchStack has
objects CatchNum, CatchEven, and CatchZeroBig (last on top).

Inside the function that starts at // 2, if message “throw: exc” is sent to self, the search for a
method would start at CatchZeroBig and proceeds towards CatchNum at the bottom of the stack. First
method throw: would check whether object exc is sub-object of ExceptionZero. If it is not, it would
test whether object exc is a sub-object of ExceptionBig. If it is not, the search would continue in
CatchEven.

At line marked as // 3, object CatchNeg has already been pushed into the stack CatchStack. At
point // 4 in the code, if statement

throw: ExceptionEven

is executed, there is a search for an eval: method that can accept ExceptionEven as parameter, starting
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at the CatchNeg object. This method is found in object CatchEven pushed in the run: method. Therefore
control is transfered to the first statement after the message send

{ // 2

process: n

} catch: CatchZeroBig

catch: CatchEven

catch: CatchNum;

which is “Out println: "this is the end"”. This is exactly like the exception handling system of
almost all object-oriented languages.

Before returning, the throw: method of Any removes the objects pushed into CatchStack together
and after CatchEven.

Every function of type Function<Nil> or UFunction<Nil> has a method

@checkCatchParameter

fun ((catch: Any)+ finally: Function<Nil>) t {

...

}

responsible for catching exceptions. The metaobject checkCatchParameter attached to this method
checks whether each parameter to a catch: selector has at least one eval: method, each of them
accepting one parameter whose type is sub-prototype of CyException.

12.3 Other Methods and Selectors for Exception Treatment

Functions of type Function<Nil> or UFunction<Nil> have a method hideException that just eats every
exception thrown in them:

n = 0;

{

n = (In readLine) asInt

} hideException;

Of course, this method should be rarely used.
Selectors retry or retry: may be used after all catch: selectors in order to call the function again

if an exception was caught by any object that is argument to any of the catch: selectors. If selector
retry: is used, it should have a function as parameter that is called before the main function is called
again.

// radius of a circle

Float radius;

{

radius = In readFloat;

if radius < 0 {

throw: ExceptionRadius(radius)

}

} catch: CatchAll

retry: {

Out println: "Negative radius. Type it again"

};
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CatchAll has a method
fun eval: (CyException e) { }

that catches all exceptions. This prototype is automatically included in every file. It belongs to package
cyan.lang.

One can just write retry: without any catch: selectors. If any exception is thrown in the function,
the eval method of the argument to retry: is called and the function is called again. If retry is used,
the function is called again if an exception is thrown in the function.

// radius of a circle

var Float radius;

{

radius = In readFloat;

if radius < 0 {

throw: ExceptionRadius(radius)

}

else if radius == 0 {

// end of input

return 0

}

} retry: {

Out println: "Negative radius. Type it again"

};

Selector tryWhileTrue: may be put after the catch: selectors in order to control how many times
the function is retrieved. The argument to tryWhileTrue: should be a Function<Boolean> function.
If an exception was thrown in the function and the argument to tryWhileTrue: evaluates to true, the
function is called again.

numTries:= 0;

{

// may throw an exception ExceptionConnectFail

channel connect;

++numTries;

} catch: CatchAll

tryWhileTrue: {^ numTries < 5 };

The above code tries to connect to a channel five times. Each time the connection fails an exception
is thrown by method connect. Each time the function after tryWhileTrue: is evaluated. In the first
five times it returns true and the main function is called again. If no exception is thrown by connect,
the argument to tryWhileTrue: is not called. Again, the catch: selectors are optional. Selector
tryWhileFalse: is similar to tryWhileTrue.

Prototype CatchIgnore could be used instead of CatchAll:

object CatchIgnore<T>

fun eval: T { }

end

...

numTries:= 0;

{

// may throw an exception ExceptionConnectFail
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channel connect;

++numTries;

} catch: CatchIgnore<ExceptionConnectFail>

tryWhileTrue: {^ numTries < 5 };

This example can be made more compact with the use of a context object to count the number of
attempts:

object Times(Int %numTries) extends UFunction<Boolean>

fun eval -> Boolean {

--numTries;

return numTries > 0;

}

end

...

{

// may throw an exception ExceptionConnectFail

channel connect;

} tryWhileTrue: Times(5);

A future improvement to the EHS of Cyan would be to make it support features of the EHS of
Common Lisp (conditions and restarts). That would be made by allowing communication between the
error signaling and the error handling. This could be made using a variable “exception”. A catch object
could have other meaningful methods besides “eval: T”. For example, a catch object could have an
“getInfo” method describing the error recovery to be chosen afterwards:

object CatchStrategy

fun getInfo -> CySymbol { ^ #retry }

end

object Test

fun test {

{

connectToServer;

buildSomething

} catch: CatchStragegy

}

fun connectToServer {

{

var Boolean fail = true;

...

// if connection to server failed, signal

// an exception

if fail {

throw: ExceptionConnection

}

} catch: { (: ExceptionConnection e :)

// if connection to server failed,

// consult getInfo for advice.
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if exception getInfo == #retry {

connectToServer

}

}

}

...

end

Maybe there should be another method that obeys automatically instructions given by objects like
CatchStrategy. Maybe catch itself should automatically retry when “exception getInfo” demands
it:

fun connectToServer {

{

var Boolean fail = true;

...

// if connection to server failed, signal

// an exception

if fail {

exception eval: ExceptionConnection

}

} catch: CatchIgnore<ExceptionConnection>

}

12.4 Why Cyan Does Not Support Checked Exceptions?

Cyan does not support checked exceptions as Java in which the exceptions a method may throw are
described in its declaration:

// this is how method "check" of Program

// would be declared in Java

private void check(int n)

throws ExceptionZero, ExceptionNeg,

ExceptionEven {

// 4

if ( n == 0 )

throw new ExceptionZero();

if ( n < 0 )

throw new ExceptionNeg();

if ( n%2 == 0 )

throw new ExceptionEven();

}

Here method check may throw exceptions ExceptionZero, ExceptionNeg, and ExceptionEven. We
could add a syntax for that in Cyan following language Green [dOGaa]:

private fun check: (Int n)

EvalZeroNegEven exception {

// 4

if n == 0 {

236



exception eval: ExceptionZero

};

if n < 0 {

exception eval: ExceptionNeg

};

if n%2 == 0 {

exception eval: ExceptionEven

}

}

Pseudo-variable exception would be declared after all regular method parameters. Inside the method
this variable is type-checked as a regular variable. Then there would be an error if there was a statement

exception eval: ExceptionRead

in method check because there is no eval: method in EvalZeroNegEven that can accept a ExceptionRead
object as parameter. Interface EvalZeroNegEven is

interface EvalZeroNegEven

fun eval: ExceptionZero

fun eval: ExceptionNeg

fun eval: ExceptionEven

end

Green employs a mechanism like this, which works perfectly in a language without functions.
But think of method ifTrue: of functions of types Function<Boolean, Nil> and UFunction<Boolean, Nil>:

fun ifTrue: (Function<Nil> b)

T exception {

if self == true {

b eval

}

}

What is the type T of exception? In

(i < 0) ifTrue: {

throw: ExceptionRead;

}

T should be

interface InterfaceExceptionRead

fun eval: ExceptionRead

// possibly more methods

end

But in another call of this method T should be different:

(i <= 0) ifTrue: {

if openError {

throw: ExceptionOpen

}

else if i == 0 {

throw: ExceptionZero
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}

}

In this case T should be

interface InterfaceOpenExceptionZero

fun eval: ExceptionOpen

fun eval: ExceptionZero

// possibly other methods

end

Then the type of T depends on the exceptions the function may throw. We have a solution for that but
it is too complex to be added to a already big language. Without explaining too much, method ifTrue:

would be declared as

fun ifTrue: (Function<Nil> b)

(b getMethod: "eval") .exception exception {

if self == true {

b eval

}

}

The declaration means that the type of exception in ifTrue: is the type of variable exception of the
method eval of function b at the call site. If ifTrue: could throw exceptions by itself, these could be
added to the type “(b getMethod: "eval") .exception” using the type concatenator operator “++”
(introduced just for this use here).

For short, we could have checked exceptions in Cyan but it seems they are not worthwhile the trouble.

12.5 Synergy between the EHS and Generic Prototypes

Generic prototype instantiations can be used as parameters to catch: message sends. With them, one
can reuse code for common tasks as shown in the following example.

object CatchExit<T>

fun eval: (T e) {

Out println: "Fatal error";

System exit

}

end

object CatchWarning<T>

fun eval: (T e) {

Out println: "Exception " + (T prototypeName) + " was thrown"

}

end

...

{

line = In readLine;

if line size == 0 {
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throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

};

Out println "line = " + line

} catch: CatchExit<ExceptionLineTooBig>

catch: CatchWarning<ExceptionEmptyLine>;

Object CatchExit<ExceptionLineTooBig> treats exception ExceptionLineTooBig because it has an
eval: method that accepts this exception as parameter. This method prints an error message and ends
the program execution.

Object CatchWarning<ExceptionEmptyLine> treats exception ExceptionEmptyLine. Method eval

of this object just prints a warning message.
Generic object CatchIgnore accepts any number of parameters up to ten. The eval: methods of

this object do nothing. The definition of CatchIgnore with two parameters is

object CatchIgnore<T1, T2>

fun eval: T1 { }

fun eval: T2 { }

end

If we want to ignore two exceptions and treat a third one, we can write something like

{

line = In readLine;

if line size == 0 {

throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

} else if line[0] == ’ ’ {

throw: ExceptionWhiteSpace

};

Out println "line = " + line

} catch: CatchIgnore<ExceptionLineTooBig, ExceptionEmptyLine>

catch: { (: ExceptionWhiteSpace e :)

Out println: "line cannot start with white space";

System exit

};

With generic prototypes, it is easy to implement the common pattern of encapsulating some exceptions
in others. When an exception Source is thrown, a catch: method captures it and throws a new exception
from prototype Target.

object ExceptionConverter<Source, Target>

fun eval: (Source e) {

throw: Target()

}

end

...

{

...

} catch: ExceptionConverter<ExceptionNegNum, ExceptionOutOfLimits>;
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ExceptionConverter can be defined for 2, 4, 6, etc. parameters.
Another common pattern of exception treatment is to encapsulate exceptions in an exception con-

tainer.

object ExceptionEncapsulator<Item, Container>

fun eval: (Item e) {

throw: Container(e)

}

end

...

{

// ExceptionNegNum may be thrown here

...

} catch: ExceptionEncapsulator<ExceptionNegNum, ExceptionArithmetic>;

Whenever ExceptionNegNum is thrown in the function, it is packed into an exception of ExceptionArithmetic
and thrown again.

Several exceptions that have the same treatment can be treated equally using the generic context
object CatchMany. This prototype can take up to ten generic parameters. Here we show the version of
it with two parameters.

object CatchMany<T1, T2>(UFunction<Nil> b)

fun eval: (T1 e) {

b eval

}

fun eval: (T2 e) {

b eval

}

end

...

{

line = In readLine;

if line size == 0 {

throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

} else if line[0] == ’ ’ {

throw: ExceptionWhiteSpace

};

Out println "line = " + line

} catch: CatchMany<ExceptionEmptyLine, ExceptionLineTooBig>(

{ Out println: ("Limit error in line " + line) } )

catch: CatchMany<ExceptionWhiteSpace, ExceptionRead>(

{ Out println: "Other error happened" });

240



We used % in the declaration of the parameter of b of CatchMany in order to allow expressions to be pa-
rameters to this context object.2 It was used UFunction instead of Function as the type of the parameter
b because b is declared by the compiler as an instance variable of this prototype (see Section 11.3). Al-
though this syntax is not too complex, it is not as clean as the equivalent feature of the new version of
Java:

try {

...

} catch ( ExceptionEmptyLine | ExceptionLineTooBig e) { ... }

catch ( ExceptionWhiteSpace | ExceptionRead e) { ... }

A catch object can declare a grammar method with alternative parameters:

object CatchLineExceptions

fun (eval: ExceptionEmptyLine | ExceptionLineTooBig) t {

Out println: ("Limit error in line " + %line)

}

end

...

{

line = In readLine;

if line size == 0 {

throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

} else if line[0] == ’ ’ {

throw: ExceptionWhiteSpace

};

Out println "line = " + line

} catch: CatchLineExceptions

catch: CatchMany<ExceptionWhiteSpace, ExceptionRead>(

{ Out println: "Other error happened" });

The effect is the same as the previous code.
Using union types, we can catch several exceptions with a single function:

{

...

} catch: { (: ExceptionEmptyLine | ExceptionLineTooBig e :)

Out println: "Limit error in line " + line

}

catch: { (: ExceptionWhiteSpace | ExceptionRead e :)

Out println: "Other error happened"

};

12.6 More Examples of Exception Handling

One can design a MyFile prototype in which the error treatment would be passed as parameter:

2The default qualifier is %. Then we could have omitted this symbol in the declaration of parameter b.
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object MyFile

@prototypeCallOnly

fun new: (String filename) { ... }

fun catch: (ExceptionCatchFile catchObject) do: (Function<String, Nil> b) {

{

open;

// readAsString read the whole file and put it in a String,

// which is returned

b eval: readAsString;

close;

} catch: catchObject

}

end

Context object Throw extends UFunction<Nil> and has an eval method that throws the exception
that is the parameter of the context object.

object Throw(CyException e) extends UFunction<Nil>

fun eval {

throw: e

}

end

It makes it easy to throw some exceptions:

{

line = In readLine;

if line size == 0 { Throw(ExceptionEmptyLine) }

else if line size > MaxLine { Throw(ExceptionLineTooBig(line)) }

else if line[0] == ’ ’ { Throw(ExceptionWhiteSpace) };

Out println "line = " + line

} catch: CatchIgnore<ExceptionLineTooBig, ExceptionEmptyLine>

catch: { (: ExceptionWhiteSpace e :)

Out println: "line cannot start with white space";

System exit

};

Prototype CatchWithMessage catchs all exceptions. It prints a message specific to the exception
thrown and prints the stack of called methods:

object CatchWithMessage

fun eval: (CyException e) {

Out println: "Exception #{e prototypeName} was thrown";

System printMethodStack;

System exit

}

end

An exception prototype may define an eval: method in such a way that it may be used as a catch
parameter:
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object ExceptionZero extends CyException

fun eval: (ExceptionZero e) {

Out println: "Zero exception was thrown";

System exit

}

end

...

// inside some method

{

n = In readInt;

if n == 0 { throw: ExceptionZero };

...

} catch: ExceptionZero;

This is confusing. But somehow it makes sense: the exception, which represents an error, provides its
own treatment (which is just a message). Guimarães [dOGaa] suggests that a library that may throw
exceptions should also supply catch objects to handle these exceptions. It could even supply an hierarchy
of exceptions for each set of related exceptions. For example, if the library has a prototype for file
handling, it should also has a catch prototype with a default behavior for the exceptions that may be
thrown. And sub-prototypes with alternative treatments and messages.

Since exceptions and theirs treatment are objects, they can be put in a hash table used for choosing
the right treatment when an exception is thrown.

object CatchTable

fun init {

// assume {* and *} delimit a literal hash table

table = {*

ExceptionZero : CatchExit<ExceptionZero>,

ExceptionNeg : CatchAll,

ExceptionRadius: { (: ExceptionRadius e :)

Out println: "Radius #{e radius} is not valid"

},

ExceptionTriangle: CatchTriangle

*};

}

fun eval: (CyException e) {

var catch = table[e prototype];

catch

typeCase: Any do: {

catch ?eval: e

}

typeCase: Nil do: {

throw: ExceptionTable

}

}

Hashtable<CyException, Any> table
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end

CatchTable can be used as the catch object:

// inside some method

{

...

} catch: CatchTable;

If an exception is thrown in the code “...”, method eval: of CatchTable is called (its parameter has
type CyException, the most generic one). In this method, the hash table referenced by variable “table”
is accessed using as key “e prototype”, the prototype of the exception. As an example, if the exception
is an object of ExceptionTriangle, “e prototype” will return ExceptionTriangle. By indexing table

with this value we get CatchTriangle. That is,
assert: table[e prototype] == CatchTriangle

in this case. Here table[elem] returns the value associated to elem in the table.
Message ?eval: e is then sent to object CatchTriangle. That is, method eval: of CatchTriangle

is called. The result is the same as if CatchTriangle were put in a catch: selector as in the example
that follows.

object ExceptionTriangle(public Double a, public Double b, public Double c)

end

object CatchTriangle

fun eval: (ExceptionTriangle e) {

// "e a" is the sending of message "a" to object "e"

// that returns the side "a" of the triangle

Out println: "There cannot exist a triangle with sides #{e a}, #{e b}, and #{e

c}"

}

end

// inside some method

{

...

if a >= b + c || b >= a + c || c >= a + c {

throw: ExceptionTriangle(a, b, c)

};

...

} catch: CatchTriangle;

Then we can replace catch: CatchTriangle in this code by “catch: CatchTable”. However, if an
exception that is not in the table is thrown, exception ExceptionTable is thrown. Assume that Nil is
returned by indexing the hash table when the key is not found. That is, “table[e prototype]” returns
Nil if the prototype is not found in the table.

Exception ExceptionStr is used as a generic exception which holds a string message.

object ExceptionStr(public String message) extends CyException

fun eval: (ExceptionStr e) {

Out println: (e message);

System exit
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}

end

It can be used as

{

var s = In readLine;

if s size < 2 {

throw: ExceptionStr("size should be >= 2")

} else if s size >= 10 {

throw: ExceptionStr("size should be < 10")

};

} catch: ExceptionStr;
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Chapter 13

User-Defined Literal Objects

Objects can be created in Cyan using methods clone and new. A literal object is an object cre-
ated implicitly without using these two methods. For example, 1, ’a’, 3.1415, "this is a string",
and { ^x <= 1 } are literal objects. The first three are objects from the basic types. The function
{ ^ x <= 1 } is a literal object of a compiler-created object as explained in Chapter 10. And every
user-defined prototype such as Person is a literal object.

Cyan will support literal objects through pre-defined metaobjects. We will give a glimpse of the
syntax of these metaobjects, which will not be adequately specified and may be subject to change. So
consider that this Chapter does not really define a language feature. It just gives an overview of a feature
that will be supported by the language in the future.

13.1 Literal Numbers

Metaobject literalNumber is used for defining literal objects that start with a number. In Cyan, it is
possible to define literals such as

100meters 50yards 50kg 30lb

3000reais 500dollars 2000_euros

10this_is_unknown 0_real_1img

These will be called literal numbers. When the compiler finds a token that starts with a number but ends
with a sequence of letters, numbers, and underscore, it searches for a metaobject capable of treating that
token. A metaobject that treats a literal number is declared using another metaobject, literalNumber:

@literalNumber<**

endsWith: "bin", "Bin", "BIN"

type: Int

parser: BinaryNumberParser

**>

The body of this metaobject should contain a sequence of pairs tag-value. One of the tags is endsWith

that specifies a sequence of letters, digits, and underscore (starting with a letter or underscore) that ends
this literal number (before the sequence there should appear at least a digit). In this example, there are
several alternatives: bin, Bin, or BIN. The parser tag specifies the Java class responsible for treating
literal numbers ended by strings given in the endsWith tag. Then a number

101Bin

will be processed by the Java class BinaryNumberParser. Future versions of Cyan will use Cyan proto-
types instead of Java classes. What happens is that, when the compiler finds a number ending by bin,
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Bin, or BIN, it loads the Java class BinaryNumberParser, creates an object from it, and calls a method
of this object passing string
" 101Bin"

and an object of class PCI as parameters (this will soon be explained). The method to be called depends
on what interface BinaryNumberParse implements. If it implements RetString, method parseRetString

is called. If it implements interface RetASTExpr, method parseRetASTExpr is called. It is an error to make
this class implement both or none of these interfaces. Suppose that, in this case, BinaryNumberParser
implements interface RetString and the compiler calls method parseRetString of the newly created
BinaryNumberParser object.

Method parseRetString will return a string that will be passed to the Cyan compiler. This string will
replace 101Bin. It is expected that the string returned from parseRetString of BinaryNumberParser
will be 5 in base 10. The Java class could be declared as

public class BinaryNumberParser implements RetString {

public String parseRetString(String text, PCI compiler) {

// cut the last three characters, which is

// bin, Bin, or BIN

String number = text.substring(0, text.length() - 3);

int n = 0;

for(i = 0; i < number.length(); i++)

n = 2*n + number.charAt(0);

return n + "";

}

}

...

interface RetString {

public String parseRetString(String);

}

Class PCI is the Public Compiler Interface, which is a restricted view of the compiler class that compiles
the Cyan program. Through the PCI object passed as parameter some compiler methods can be called
and some compilation information can be obtained. In this example, no information is needed and no
compiler method is called.

Tag type of the literalNumber call gives the type of the literal object. This tag may be omitted.
Class BinaryNumberParser could have defined a method

Expr parseRetASTExpr(String text, PCI compiler)

that returns an object of the compiler AST representing an integer.

public class BinaryNumberParser {

public Expr parseRetASTExpr(String text, PCI compiler) {

// cut the last three characters, which is

// bin, Bin, or BIN

String number = text.substring(0, text.length() - 3);

int n = 0;

for(i = 0; i < number.length(); i++)

n = 2*n + number.charAt(0);

return new ExprLiteralInt(n, compiler.currentToken());

}

}
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ExprLiteralInt is the AST class of the compiler that represents a literal integer. Both n and the
current token of the compiler is passed as arguments in the creation of the ExprLiteralInt object,
which represents a literal number n. The current token of the compilation is an object of class Token

representing 101Bin. This object is necessary when there is a compilation error for it contains the number
of the line of the token.

A literal number should be defined outside any prototype. It may be declared private, protected, or
public by tags private:, protected, and public: without arguments. A private literal can only be
used in the source file in which it was declared. A protected literal can only be used in its package. A
public one can be used in any package that imports the package in which it was defined.

In the future Cyan will replace Java as the metaobject protocol language. Then the Java AST
expression will not be returned by the method. Line

return new ExprLiteralInt(n, compiler.currentToken());

would be replaced by something like

compiler exprLiteralInt: n;

This message send calls a grammar method that creates a literal Int which replaces the original expression
(101Bin in the example). Using other grammar methods of parameter compiler, one will be able to create
any Cyan expression.

Literal numbers may specify anything, not just numbers. For example, one could call literalNumber
to create a graph with the syntax

var Graph g = 1_2__2_3__3_1_graph;

That would be the graph G = {(1, 2), (2, 3), (3, 1)}.

13.2 Literal Objects between Delimiters

A metaobject call is delimited by a pair like <<+ and +>>. The rules of formation of these pairs were
explained in Section 5.2. Metaobject literalObject allows one to define literal objects which are
delimited by pairs like <<+ and +>> optionally preceded by an identifier. The language offers several
examples of these literal objects:

// arrays

var Array<Int> v = {# 1, 2, 3 #};

// unnamed tuples

var Tuple<String, Int> t1 = [. "first", 0 .];

// named tuples

var t2 = [. university: "UFSCar" country: "Brazil" .];

Besides these ones, the programmer may define her own literal objects, which may be preceded by an
identifer. So we could have things like

var Graph g1 = GraphBuilder<<+ (1, 2), (2, 3), (3, 1) +>>;

var Graph g2 = GraphBuilder(** (1, 2), (2, 3), (3, 1) **);

var Hashtable dictionaryEnglishPortuguese = Dict( "one":"um", "two":"dois" );

GraphBuilder is the name of the literal object. Its declaration, explained in the following paragraphs,
defines the syntax of the code between <<+ and +>> and how it is used to create a Graph object. The
delimiters are not attached to a particular literal object and the literal object is not attached to a
particular pair of delimiters.

Literal object names have their own name space. So we can have a literal object name Graph and a
literal object name Graph (instead of GraphBuilder as in the example).
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A literal object may be specified in several different ways. The simplest one is by giving a start
delimiter and a Java class for parsing the object:

@literalObject<<

start: "<@"

parse: ParseList

>>

When the compiler finds “<@”, it loads the Java class ParseList, creates an object of this class, and
calls a parseRetString method of this object passing to it the text between <@ and @> and a PCI object
(Public Compiler Interface). The parseRetString method should return a string that creates an object
that replaces

<@ ... @>

For example, suppose we have
var myList = <@ "hi", 23, 3.14 @>;

and method parseRetString of ParseList returns

var tmp0001 = List new: 3;

tmp0001 add: "hi";

tmp0001 add: 23;

tmp0001 add: 3.14;

Then var myList = <@ "hi", 23, 3.14 @>; will be transformed into

var tmp0001 = List new: 3;

tmp0001 add: "hi";

tmp0001 add: 23;

tmp0001 add: 3.14;

var myList = tmp0001;

The type of the object resulting from the literal object may be given by tag type:

@literalObject<<

start: "<**"

parse: ParseIntSet

type: Set<Int>

>>

The name of the literal object is given by tag name:. In this option, the start: tag should not be
given.

@literalObject<<

name: GraphBuilder

parse: GraphParser

type: Graph

>>

...

var Graph g1 = GraphBuilder<<+ (1, 2), (2, 3), (3, 1) +>>;

var Graph g2 = GraphBuilder(** (1, 2), (2, 3), (3, 1) **);

Both named and unnamed literal objects may have a regexpr: tag. After this tag should appear
a regular expression. The literal object should obey the grammar defined by this literal object which is
composed by the regular expression operators, type names, and strings of symbols given between quotes.
Each type means an expression of that type, just like in a method signature. Let us see an example.
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@literalObject<<

start: "<@"

regexpr: ( String ":" Int )*

type: ListStringInt

parse: ParseListStringInt

>>

...

var myList = <@ "um": 1 "dois" : 2 @>;

The regular expression given after regexpr: matches pairs of strings and integers separated by “:”. The
literal object uses this regular expression to check the literal object before calling method parseRetString

(or other equivalent to it) of ParseListStringInt. Therefore the checking is made twice by the metaob-
ject literalObject and by the Java class.

Tag addAll allows one to easily define a literal object. The parse: tag should be omitted if we
use a addAll: tag. Suppose we want a dictionary literal which should be an object of prototype
Dict<String, String>. Assume this prototype defines a method

addEverything: Array<Tuple<String, String>>

Then the literal could be defined as

@literalObject<<*

start: "{*"

regexpr: (String ":" String)*

type: Dict

addAll: (Dict<String, String> getMethod: "addEverything: Array<Tuple<String, String

>>")

*>>

And used as

var dict = {* "John" : "professor" "Peter":"engineer" "Anna":"artist" *};

Metaobject literalObject would create an object based on the real literal object given between {*

and *}. The algorithms used in grammar methods would be used here. Then for the above example, the
metaobject would create a object of

Array<Tuple<String, String>>

Then an object of Dict<String, String> would be created and the above object would be passed to
method addEverything of this object. This method is specified in the tag addAll. Of course, the method
name could be anyone such as “createFrom”.

Then the code
var dict = {* "John" : "professor" "Peter":"mechanic" "Anna":"Artist" *};

would be converted into

var obj001 = Array<Tuple<String, String>> new: 3;

obj001[0] = [. "John", "professor" .];

obj001[1] = [. "Peter", "engineerer" .];

obj001[2] = [. "Anna", "artist" .];

var tmp0001 = Dict<String, String> new;

tmp0001 addEverything: obj001;

var dict = tmp0001;
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In the regular language
( String ":" Int )*

the most external operator is an *. Therefore we can choose to add one element at a time by using tag
add: instead of addAll:.

@literalObject<<*

start: "{*"

regexpr: (String ":" String)*

type: Dict

add: (Dict<String, String> getMethod: "add: Tuple<String, String>")

*>>

In this case,
var dict = {* "John" : "professor" "Peter":"mechanic" "Anna":"Artist" *};

would be converted into

var tmp0002 = Dict<String, String> new;

tmp0002 add: [. "John", "professor" .];

tmp0002 add: [. "Peter", "engineer" .];

tmp0002 add: [. "Anna", "artist" .];

var dict = tmp0002;

Annotations could be used to allow the literal object to be build using an AST as in grammar methods.
So we could write

@literalObject<<*

start: "{*"

regexpr: (String ":" String)*

type: Dict

addAll: Dict<String, String>

*>>

if prototype Dict<String, String> has an annotation #f1 in method addEverything. The metaobject
literalObject would then know that this method should be used in order to create the literal object.
The root prototype could have references to other objects that should be annotated too, just like grammar
methods. This feature makes small Domain Specific Languages very easy to implement.

By default, comments are allowed in the literal objects. This can be changed by using option comments
off:

@literalObject<<*

start: "{*"

regexpr: (String ":" String)*

type: Dict

addAll: Dict<String, String>

comment: off

*>>

A future improvement in literal objects would be to allow generic types. Like

@literalObject<<*

start: "{*"

genericType: T, U

regexpr: (T ":" U)*
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type: Dict<T, U>

addAll: (Dict<T, U> getMethod: "addEverything: Array<Tuple<T, U>>")

*>>

There is one special delimiter for literal objects: “\”. A literal object whose left delimiter is “\” ends
with “\” too. Then a regular expression literal object can be easily defined:

@literalObject<<

start: "\"

parse: ParseRegularExpression

>>

Class ParseRegularExpression is very simple:

public class ParseRegularExpression implements RetString {

public String parseRetString(String text, PCI compiler) {

// cut the first and last characters, which are \

String regExpr = text.substring(1, text.length() - 1);

return "(RegExpr new: \"" + regExpr + "\")";

}

}

Assume the existence of a RegExpr prototype for regular expressions. RegExpr has a method
fun =~ (String str) -> Boolean

that returns true if the regular expression that receives the message matches str. When the compiler
finds a literal regular expression object

\reg-expr\

it replaces it by
(RegExpr new: "reg-expr")

The compiler only recognizes this literal object if the call to metaobject literalObject is in a package
imported by the current source file — see Figure 13.1.
As an example of code,

if \[A-Za-z]+\ =~ ident {

Out println: "found an identifier";

}

would be replaced by

if (RegExpr new: "[A-Za-z]+") =~ ident {

Out println: "found an identifier";

}

Literal objects could be used to embed small languages inside the Cyan source code. That is, literal
objects can be used for implementing Domain Specific Languages. For example, a literal object named
AwkCode could store code of language AWK:

Awk with: "fileName" do: AwkCode[#

(\[A-Z]*\ ~$0) : { v[n++] = $0 }

END : { for (j = 0; j < n; j++) println v[j]; }

#]
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@literalObject« start: "

parse: ParseRegularExpression »

RegExpr.cyan

if ( A-Za-z]+ = ident ) [ ... ]

imported by

Editor.cyan

package cyan.lang.text

package main

import cyan.lang.text

Figure 13.1:

The same can be made for a small version of Prolog:

Prolog query: {? fat(5, X) ?} database: {+

fat(0, 1).

fat(N, F) :- N1 is N - 1, fat(N1, H), F is H*N.

+}

In the same vein, SQL code can easily be embedded in Cyan:
var v = [## select name, age from Person where age > 18 ##];

Cyan does allow nested comments. If it did not, comments delimited by /* and */ could be easily be
implemented as literal object.

@literalObject<<*

start: "/*"

parse: ParseComment

*>>

The parser should only return a single space character — in Cyan, any comment counts as a single space.

public class ParseComment implements RetString {

public String parseRetString(String text, PCI compiler) {

return " ";

}

}

Generic prototypes may be defined as metaobjects. Then “P<T1, T2, ... Tn>” results in a compile-
time call to a method createRealPrototype of metaobject P which would produce a real prototype that
replaces “P<T1, T2, ... Tn>” in the source code. Tuples will be implemented in this way by the Cyan
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compiler. In this approach, generic prototypes are just functions that return a prototype or interface at
compile-time.

For example, suppose we want to define metaobject NTuple for generic tuples. It would be a Java
class with a method createRealPrototype that accepts the real arguments to the tuple type. This
method would return the source code of the NTuple prototype (probably as an array of Char’s). For each
set of real arguments there would be a different source code. The Java method createRealPrototype

should generate the methods of a prototype TupleT1T2...Tn with those arguments. There should be a
loop somewhere in this method that iterates on the real arguments because for each field there should
be generated two methods (one for getting and the other for setting the field).

It would be nice to have a metaobject genericPrototype that helps the creation of metaobjects
that represent generic prototypes. Metaobject genericPrototype could support a macro language1 that
make it easy to generate code for the generic prototype. To define a prototype NTuple we could write

@genericPrototype<<*

name: NTuple

code: {**

// code of NTuple with macro commands

object NTuple...

...

end

**}

*>>

Tag “name” gives the name of the “generic prototype”, which is in fact a metaobject. Tag “code”
accepts a code between “{**” and “**}” as shown above. This code would be the code of prototype
NTuple. It would consist of Cyan code and commands of a macro language defined by the creator of
genericPrototype. This language would have decision and repetition statements that would make it
easy to generate code.

1Following a suggestion of Rodrigo Moraes.
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Chapter 14

The Cyan Language Grammar

This Chapter describes the language grammar. The reserved words and symbols of the language are
shown between “ and ”. Anything between

• { and } can be repeated zero or more times;

• { and }+ can be repeated one or more times;

• [ and ] is optional.

The program must be analyzed by unfolding the rule “Program”.
There are two kinds of comments:

• anything between /* and */. Nested comments are allowed.

• anything after // till the end of the line.

Of course, comments are not shown in the grammar.
The rule CharConst is any character between a single quote ’. Escape characters are allowed. The

rule Str is a string of zero or more characters surrounded by double quotes ". The double quote itself
can be put in a string preceded by the backslash character \. Rule AtStr is @" followed by a string ended
by double quotes. The backslash character cannot be used to introduce escape characters in this kind of
string.

A literal number starts with a number which can be followed by numbers and underscore (_). There
may be a trailing letter defining its type:

35b // Byte number

2i // integer number

There should be no space between the last digit and the letter. User-defined literal numbers start with
a digit and may contain digits, letters, and underscore:

100Reais 2_3_5_7_prime_0_2_4_even

All words that appear between quotes in the grammar are reserved Cyan keywords. Besides these
words, there are other keywords cited in Section 3.3 that are not currently used by the language.

Id is an identifier composed by a sequence of letters, digits, and underscore, beginning with a letter
or underscore. But a single underscore is not a valid identifier. IdColon is an Id followed by a “:”,
without space between them, such as “ifTrue:” and “ifFalse:”. InterIdColon is an Id followed by
a “:” and preceded by “?” as in “?at:” (dynamic unchecked message send). InterId is an Id preceded
by “?” such as “?name”. TEXT is a terminal composed by any number of characters. Symbol ‘ is
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terminal BACKQUOTE, ASCII 96. InterDotIdColon is an Id followed by a “:” and preceded by “?.” as
in “?.at:”. (nil-safe message send). InterDotId is an Id preceded by “?.” as in “?.name”.

LeftCharString is any sequence of the symbols

= ! $ % & * - + ^ ~ ? / : . \ | ( [ { <

Note that >, ), ], and } are missing from this list. RightCharString is any sequence of the same symbols
of LeftCharString but with >, ), ], and } replacing <, (, [, and {, respectively. The compiler will check
if the closing RightCharString of a LeftCharString is the inverse of it. That is, if LeftCharString is

(*=<[

then its corresponding RightCharString should be
[>=*)

SymbolLiteral is a literal symbol (see page 67 for definition). There are limitations in the sequences
of symbols that are considered valid for literal objects. They cannot start with ((, )), ([, ]), [[, ]],
(:, {(:, >(, {^, :[, :(, {., and ::. For short, they cannot start with any sequence of symbols which can
appear in a valid Cyan program. For example, [(: is illegal because we can have a function declared as

{ (: Int n :) ^ n*n }

SymUnary is a Cyan symbol #ident in which ident is a valid identifier. For example,
#get #b100 #array #size

SymColor is a Cyan symbol #ident: in which ident is a valid identifier. For example,
#set: #at: #do: #f34_34:

CompilationUnit ::= PackageDec ImportDec { CTMOCallList ProgramUnit }
PackageDec :: “package” QualifId [ “;” ]
ImportDec ::= { “import” IdList [ “;” ] }
ProgramUnit ::= [ QualifProtec ] ( ObjectDec | InterfaceDec )
QualifProtec ::= “private” | “public” | “protected”
CTMOCallList ::= { CTMOCall }
CTMOCall ::= (“@” | “@@” ) Id

[ “(” | “[” | “{” ExprLiteral “)” | “]” | “}” ]
[ LeftCharString TEXT RightCharString ]

ObjectDec ::= [ “mixin” [ “(” Type “)” ] | “abstract” | “final” ]
“object” Id { TemplateDec }
[ ContextDec ]
[ “extends” Type ]
[ “mixin” TypeList ]
[ “implements” TypeList ]
{ SlotDec }
“end”

TemplateDec ::= “<” TemplateVarDecList “>”
TemplateVarDecList ::= TemplateVarDec { “,” TemplateVarDec }
TemplateVarDec ::= [ Type ] Id [ “+” ]
ContextDec ::= “(” CtxtObjParamDec { “,” CtxtObjParamDec }“)”
CtxtObjParamDec ::= [ “public” | “protected” | “private” ] Type

[ “%” | “&” | “*” ] Id
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Type ::= SingleType { “|” SingleType }
SingleType ::= QualifId { “<” TypeList “>” } | BasicType |

“typeof” “(” QualifId [ “<” TypeList “>” ] “)”
SlotDec ::= CTMOCallList QualifProtec ( ObjectVariableDec

| MethodDec | ConstDec )
ConstDec ::= “const” Type Id “=” Expr [ “;” ]
MethodDec ::= [ “override” ] [ “abstract” ] “fun” MethodSigDec

( MethodBody | “=” Expr [ “;” ] )
MethodSigDec ::= [ Type ] ( MetSigNonGrammar | MetSigUnary |

MetSigOperator | MetSigGrammar )
MetSigNonGrammar ::= { SelecWithParam }+
MetSigUnary ::= Id
MetSigOperator ::= UnaryOp | BinaryOp ( ParamDec | “(” ParamDec “)” )
MetSigGrammar ::= SelectorGrammar [ Type ] Id
SelecWithParam ::= IdColon |

IdColon [ “[]” ] ParamList
SelectorGrammar ::= “(” SelectorUnitSeq “)”

[ “∗” | “+” | “?” ]
SelectorUnitSeq ::= SelectorUnit { SelectorUnit } |

SelectorUnit { “|” SelectorUnit }
SelectorUnit ::= SelecGrammarElem | SelectorGrammar
SelecGrammarElem ::= IdColon |

IdColon TypeList |
IdColon “(” Type “)” ( “∗” | “+” )

TypeOrParamList ::= TypeList | ParamList
TypeList ::= Type { “,” Type }
ParamList ::= ParamDec { “,” ParamDec } |

“(” ParamDec { “,” ParamDec } “)”
ParamDec ::= [ Type ] Id
MethodBody ::= “{” StatementList “}”
ObjectVariableDec ::= [ “shared” ] [ “var” ] Type Id [ “=” Expr ]

{ “,” Id [ “=” Expr ] } [ “;” ]
FunctionDec ::= “” [ “(:” FuncSignature “:)” ] StatementList “”
FuncSignatureRet ::= FuncSignature [ “->” Type ]
FuncSignature ::= ( Type Id | Type “self” ) { “,” Type Id } [ “->” Type ] |

[ Type “self” “,” ] IdColon { Type Id } { “,” Type Id } }
QualifId ::= Id { “.” Id }
TypeList ::= Type { “,” Type }
IdList ::= Id { “,” Id }
InterfaceDec ::= “interface” Id [ TemplateDec ] [ “extends” TypeList ]

{ “fun” InterMethSig }
“end”

InterMethSig ::= [ Type ] InterMethSig2
InterMethSig2 ::= Id |

{ IdColon [ “[” ] [ InterParamDecList ] [ “]” ] }+ |

UnaryOp |

BinaryOp ( SingleInterParamDec | “(” SingleInterParamDec “)” )
InterParamDecList ::= WithoutParentDecList | WithParentDecList
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WithoutParentDecList ::= ParamTypeDecList { “,” ParamTypeDecList }
ParamTypeDecList ::= Type [ Id ]
WithParentDecList ::= “(” WithoutParentDecList “)”
SingleInterParamDec ::= Type Id
BasicType ::= “Byte” | “Short” | “Int” | “Long” |

“Float” | “Double” | “Char” | “Boolean”
StatementList ::= Statement { “;” Statement } | ε
Statement ::= ExprAssign | ReturnStat | VariableDec | CTMOCall |

IfStat | WhileStat | NullStat
VariableDec ::= [ “var” ] [ Type ] Id [ “=” Expr ] { “,” [ Type ] Id [ “=” Expr ] } [ “;” ]
ReturnStat ::= “return” Expr | “^” Expr
IfStat ::= “if” Expr StatListBracket

{ “else” “if” Expr StatListBracket }
[ “else” StatListBracket ]

WhileStat ::= “while” Expr StatListBracket
StatListBracket ::= “{” StatementList “}”
NullStat ::= “;”
ExprAssign ::= Expr [ Assign ]
Assign ::= { “,” OrExpr } “=” OrExpr
Expr ::= OrExpr [ MessageSendNonUnary ] | MessageSendNonUnary

“super” MessageSendNonUnary
MessageSendNonUnary::= { [ BACKQUOTE ] IdColon [ RealParameters ] }+ |

{ InterIdColon [ RealParameters ] }+ |

{ InterDotIdColon [ RealParameters ] }+
BinaryOp ::= ShiftOp | BitOp | MultOp | AddOp | RelationOp

“||” | “~||” | “&&” | “..” | “..<”
RealParameters ::= ExprOr { “,” ExprOr }
ExprOr ::= ExprXor { “||” ExprXor }
ExprXor ::= ExprAnd { “~||” ExprAnd }
ExprAnd ::= ExprRel { “&&” ExprRel }
ExprRel ::= ExprInter [ RelationOp ExprInter ]
ExprInter ::= ExprAdd [ ( “..” | “..<” ) ExprAdd ]
ExprAdd ::= ExprMult { AddOp ExprMult }
ExprMult ::= ExprBit { MultOp ExprBit }
ExprBit ::= ExprShift { BitOp ExprShift }
ExprShift ::= ExprColonColon [ ShiftOp ExprColonColon ]
ExprColonColon ::= ExprDotOp { “::” ExprDotOp }
ExprDotOp ::= ExprUnaryUnMS { DotOp ExprUnaryUnMS }
DotOp ::= “.*” | “.+”
ExprUnaryUnMS ::= ExprUnary { UnaryId }
UnaryId := [ BACKQUOTE ] Id | InterId | InterDotId
ExprUnary ::= [ UnaryOp ] ExprPrimaryIndexed
ExprPrimaryIndexed ::= ExprPrimary Indexing
Indexing ::= “[” Expr “]” | “?[” Expr “]?”
UnaryOp ::= “+” | “−” | “++” | “−−” | “!” | “~”
ExprPrimary ::= “self” [ “.” Id ] |

“self” |

“super” UnaryId |
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QualifId { “<” TypeList “>” }+ [ ObjectCreation ] |
QualifId { “<” TypeList “>” }+ |

“typeof” “(” QualifId [ “<” TypeList “>” ] “)”
ExprLiteral | “(” Expr “)”

ObjectCreation ::= “(” [ Expr { “,” Expr } ] “)”
ExprLiteral ::= ByteLiteral | ShortLiteral | IntLiteral |

LongLiteral | FloatLiteral | DoubleLiteral | CharLiteral |
BooleanLiteral | Str | AtStr | SymbolLiteral | “Nil” |

LiteralArray | FunctionDec
LeftCharString TEXT RightCharString | LiteralTuple

BooleanLiteral ::= “true” | “false”
LiteralArray ::= “{#” [ Expr “,” { Expr } ] “#}”
LiteralTuple ::= “[.” TupleBody | UTupleBody “.]”
TupleBody ::= (IdColon | Id “:” ) Expr { “,” IdColon Expr }
UTupleBody ::= Expr { “,” Expr }
ShiftOp ::= “<.<” | “>.>” | “>.>>”
BitOp ::= “&” | “|” | “~|”
MultOp ::= “/” | “∗” | “%”
AddOp ::= “+” | “−”
RelationOp ::= “==” | “<” | “>” | “<=” | “>=” | “! =”
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Chapter 15

Opportunities for Collaboration

There are many research projects that could be made with Cyan and on Cyan:

(a) to implement metaobjects @dynOnce and @dynAlways and to design algorithms that help the tran-
sition of dynamically-typed Cyan to statically-typed Cyan. There are a great deal of work here, at
least several master thesis. This work can involve the discovery of types statically (at least most of
them), the use of a profiler to discover some types at runtime, the combination of static and dynamic
type information, refactorings directed by the user (he/she chooses the type of each troublesome
variable/parameter/return type, for example), help by the IDE, etc.

It would be very important to have a language in which the programmer could develop a program
without worrying about types in variables/parameters/return values and then convert this program
to statically-typed Cyan. I would say that this is one of the central points of the language;

(b) to design the metalevel appropriately. The design of the metalevel is of fundamental importance to
the language. Usually metalevel programming is too difficult and regular programmers do not use
it (not considering Lisp macros). The challenge is to design a “simple” metalevel. Maybe grammar
methods may be useful here: instead of allowing the user to modify the abstract syntax tree of the
code, she or he should change the code through one or more grammar methods. For example, to add
a method to a prototype, one could use the code

Obj addMethod:

selector: #sum:

param: #a type: Int

param: #b type: Int

returnType: Int

ASTbody:

returnStat: (Expr add: #a, #b);

This is a grammar method of prototype Any. This call would add method
Int sum: (Int a, Int b) { return a + b }

to object Obj;

(c) implement some Design Patterns in Cyan with the help of: 1) compile-time metaobjects and b) literal
objects. The use of literal objects makes it easy the codification of some design patterns. This is a
good project and it seems one of the easy ones. The metaobject protocol could be improved to deal
with the most used patterns. I said “improved”, not modified just to make the patterns more easily
implemented;

260



(d) implement some literal objects which are the code of some small languages such as AWK and SQL.
It would be nice if Cyan code could be used inside the code of the language;

(e) to use Cyan to implement a lot of small Domain Specific Languages;

(f) to use Cyan to investigate language-oriented programming [War95];

(g) to implement a lot of small compile-time metaobjects for small tasks. One of my students [?] has
already made some codegs. There are millions of interesting compile-time metaobjects to build;

(h) to add parallelism to the language and to design a library for distributed programming. That includes
the implementation of patterns for parallel programming;

(i) to design code optimization algorithms for Cyan;

(j) to program the Cyan basic libraries for handling files, data structures, and so on;

(k) enumerated constants. They could be Java like or C# like — which would be better?
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Chapter 16

The Cyan Compiler

Every Cyan program should be described by a project in xml. This project file should be in a directory
with the same name as the file (without the extension xml). Every subdirectory of this directory corre-
sponds to a package of the language. All the source files of a package should be in the same directory. For
example, the following directory tree describes a program named myFirstProg which contains packages
main and DS. Package main has source files Program.cyan, A.cyan, and B.cyan. DS has files Stack.cyan
and List.cyan. We use right shift for sub-directories.

myFirstProg

myFirstProg.xml

main

Program.cyan

A.cyan

B.cyan

DS

Stack.cyan

List.cyan

The project file, myFirstProg.xml in this example, describes the Cyan program: author (tag author

of xml, there may be more than one author), compiler options (attribute options of the root element,
project), main package (tag mainPackage), main object (tag mainObject), path of other Cyan packages
(tag cyanpath), path of Java files (tag javapath), and its packages (tag packageList). Each package is
described by an element whose tag is package. The children of package can be name and sourcefile

(one for each Cyan source file of the package). There may be an attribute options in each source file
and in each package. The compiler options of a source file are the union of those defined in the project,
package, and source file. The last ones have precedence over the options for project and package. And
the package options have precedence over the ones of the project. For example, if the project has an
option “-ue” and the source an option “+ue”, it is the last one that is valid in the tag sourcefile, if
there is one. If there is none, the options are those of its package.

Let us see an example, file myFirstProg.xml:

<?xml version="1.0"?>

<!-- This is a comment -->

<!-- options are the compiler options separated by spaces -->

<project options = "-ue -sfe" >

<author>
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Jose de Oliveira Guimaraes

</author>

<mainPackage>

main

</mainPackage>

<!-- This is the object in which the execution stars. It should be

in the main package described above. The execution starts

in method run of this object. -->

<mainObject>

Program

</mainObject>

<cyanpath>

c:\cyan\lang

</cyanpath>

<packageList>

<package options = "-of" >

<name> main</name>

<sourcefile> Program.cyan </sourcefile>

<sourcefile> A.cyan </sourcefile>

<sourcefile> B.cyan </sourcefile>

</package>

<package>

<name> DS </name>

<sourcefile> Stack.cyan </sourcefile>

<sourcefile> List.cyan </sourcefile>

</package>

</packageList>

</project>

A package may be in a directory which is not subdirectory of the project directory (myFirstProg in
the example). In this case, the package element in the XML file describing the project should have an
attribute “dir” indicating the directory of the package. In the following example, package “ds” is in
directory “c:\user\jose\ds”.

<?xml version="1.0"?>

<project>

<author>

Jose de Oliveira Guimaraes

</author>

<mainPackage> main

</mainPackage>

<mainObject> Program </mainObject>

<cyanpath> c:\cyan\lang </cyanpath>

<packageList>
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<package dir = "c:\user\jose\ds" >

<name> ds </name>

<sourcefile> Stack.cyan </sourcefile>

<sourcefile> List.cyan </sourcefile>

<sourcefile> MyArray.cyan </sourcefile>

</package>

<package>

<name> main </name>

<sourcefile> Program.cyan </sourcefile>

</package>

</packageList>

</project>

The source files of a package a.b.c.d should be in a directory d and the package name defines a
directory tree:

C:\myProjects

a

b

c

d

// source files of package d

e

// source files of c

// source files of package c

There should be directories a, b, c, and d. But it is not necessary that packages a, b, and c exit.
There is one XML element called codegpath composed by a complete path of a single directory that

should contain codegs. This element should appear in the same level as author. More than one cyanpath
element can appear:

<?xml version="1.0"?>

<project>

<author> Jose de Oliveira Guimaraes </author>

<mainPackage> main </mainPackage>

<mainObject> Program </mainObject>

<cyanpath> c:\cyan\lang </cyanpath>

<codegpath> D:\compilers\Cyan\lib\codeg </codegpath>

<codegpath> E:\eu\cyan\codeg </codegpath>

<packageList>

<package>

<name> main </name>

<sourcefile> Program.cyan </sourcefile>
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</package>

</packageList>

</project>

When a codeg MyCodeg is found by the Eclipse environment (with the codeg plugin), it searches for
a Java class called MyCodegCodeg that will handle that codeg. This search is made in the following
directories, in this order:

• CYANPATH\codeg, in which CYANPATH is a environment variable;

• the directories of the element codegPath, in the order they appear.

Using the above example, the compiler would search for, in this order:

• CYANPATH\codeg\MyCodegCodeg

• D:\compilers\Cyan\lib\codeg\MyCodegCodeg

• E:\eu\cyan\codeg\MyCodegCodeg

The current compiler options are:

1. “-cyanLang Path” in which Path is the path of the package cyan.lang. This package contains all
the basic types, arrays etc;

2. “-add” that adds automatically the qualifier “public” for objects and methods declared without a
qualifier and “private” for instance variables declared without qualifier. The compiler changes a
source code like

package bank

object Account

fun init: Client client {

self.client = client

}

fun print {

Out println: (client getName)

}

Client client

end

into

package bank

public object Account

fun init: Client client {

self.client = client

}

fun print {

Out println: (client getName)

}

Client client

end
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Chapter 17

Future Enhancements

Some Cyan features may be changed and others may be added. This is a partial list of them:

1. private generic prototypes, which are currently illegal;

2. package qualifier for prototypes and methods;

3. typeof may be legal as a real parameter in a generic prototype instantiation:

var Int count = 0;

var Stack<typeof(count)> intStack; // ok

4. A finally: selector may be added to the initial function that starts the program execution. That
would allow finalizers, code that is called when the program ends. There could be a list of methods
to be called when the program ends. This is odd, but someone will certainly like it.

{

} catch: RuntimeCatch

finally: {

DoomsdayWishList foreach: { (: UFunction<Nil> elem :) elem eval };

};

In some other place:

DoomsdayWishList add: { "Good bye!" print };
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