Homework List.
Departamento de Computacao — UFSCar.
José de Oliveira Guimaraes.

1. Check of instance variable use. Private get and set methods are created to each instance vari-
able (IV). The compiler changes all accesses to instance variables to calls to these methods. An IV
wasSet_ivname is created for each instance variable. The variable is initially set to false. Method
set sets it to true. If get is called and wasSet_ivname is false, the program is terminated with an
error message.

2. A static variable is incremented at the beginning of each method to count how many times it was
called. At the end of the program, a statistics is printed. Example of generated code:

int Person_init_count = 0;

void Person_init(char #*name, int age) {
Person_init_count++;

}
void main() {

prinf ("Person::init called %d times\n", Person_init_count);

3. The syntax of Simples is changed to allow, after the type of an instance variable, the words get
and set. Example:

class Student
private:
var name, course : String get set;
public:

end

This means the compiler should add public methods get and set for each instance variable of the list:
get_name, set_name, get_course, set_course

The places in which name and course are used are not modified. That is, a statement “self .name = ""”

inside class Student is not modified because set was added to this class.

4. Print only the interface of each class (without the method bodies and instance variables). The
interface of a class is composed by the name of the class, its superclass (if any), and the signatures
of the public methods. The interface should include all of the inherited methods. The signature of a
method is composed by its name, parameter types, and return type (if any). As a comment, the names
of the parameters may appear in the signature. Of course, a method defined in both the superclass
and the subclass should appear just one time in the class interface. Given classes

class Person subclassOf Mammal

private:
var name : String;
age : integer;
public:

proc init(name : String; age : integer)
begin
self.name = name;
self.age = age;
end

proc getName() : String
begin
return self.name;
end

proc getAge() : integer
begin
return self.age;
end

proc print()
begin
write(self.name);
write(self.age);
end

end

the tool would produce the following output:

class Person subclass0f Mammal
public:
proc init(name : String; age : integer)
proc getName() : String
proc getAge() : integer
proc print()
end

5. Print the interface of each class like the previous item and, for each method, print

e the methods and instance variables of the same class the method uses;

e the methods of other classes the method calls.
As an example, suppose class LazyMan has method

proc doNothingUseful(name : String; myCar : Car)
begin
self.count++;
self.talkToNobody (name) ;
// neighbor has type Person
self .neighbor.tellHimToDoNothingToo () ;
self.spendTime = self.findTime(100);
myCar . turn0ff () ;
end

The tool (your compiler) could produce the following output for this method:

LazyMan
proc doNothingUseful(name : String; myCar : Car)
Instance variables: count, spendTime, neighbor
Methods: talkToNobody, findTime
Other class methods: Car::turnOff, Person::tellHimToDoNothingToo

