
Refactoring List.
Departamento de Computação – UFSCar.
José de Oliveira Guimarães.

A refactoring tool takes as input a program in, say, Simples, and outputs the same program with
some improvements. For example, the output may not have some unused variables, some classes may
have been split in two or more, some classes may have been merged, some names may have been
changed, etc. Of course, these changes are directed by the programmer, they are not made at will
by the tool. The programmer usually chooses which kind of refactoring to apply by a Graphical User
Interface, which asks for the information necessary to do the job. For example, the programmer may
wish to change the name of class Teacher to Professor. The tool asks the name of the class to be
changed and then the new name. The tool then changes all occurrences of class Teacher to Professor.
This is not just a “Search and replace” operation. The tool must know the syntax and semantics of
the language. For example, the first “Teacher” below should be replaced for it represents a class
name. But the second should not be changed.

class Student
private:

var advisor : Teacher;
Teacher : Person;

public:
...

end

In the following items we show a small list of refactorings that a tool can do. We assume there
will be a class Refactoring with one method for each refactoring. Each method of class Refactoring
changes the AST. Then after each call to a Refactoring method, the compiler should call method
genSimples (to be done) of class Program to print the new program created by the refactoring. Then
the refactorings will not be called through a GUI. To use a refactoring one should call a method of
class Refactoring. For example, suppose the AST for the program has been built by the compiler
and variable program points to the root of the AST. To apply refactoring extract class (see below),
one should do:

program = compiler.compile(input, new PrintWriter(System.out));
if (program != null) {

PW pw = new PW();
pw.set(printWriter);
Refactoring refactoring = new Refactoring(program);
refactoring.extractClass("Person", "Student",

new String[] { "getCourse", "setCourse", "getNumber", "setNumber" },
new String[] { "course", "number" });

program.genSimples(pw);
if (printWriter.checkError()) {

System.out.println("There was an error in the output");
}

}

1. Extract class. Create a new class from a class. Some methods and instance variables are moved

1

from the original class to the new class. It is not necessary to check if the methods that are to be
moved use only the instance variables that are to be moved.

This refactoring should be done by method extractClass that takes as parameters the name of
the class, the name of the new class and the methods and instance variables that should be moved to
the new class. Example:

refactoring.extractClass("Person", "Student",
new Object[] { "getCourse", "setCourse" },
new Object[] { "course" });

The above command will create a new class Student from a class Person. Student will have
methods getCourse and setCourse and instance variable course. Of course, Person will no longer
have these methods and this instance variable.

2. Collapse hierarchy. Merge superclass and subclass. Algorithm:

• add all subclass methods and instance variables into the superclass. Errors may occur;

• change all references to the subclass to references to the superclass;

• remove the subclass.

This refactoring should be done by method collapseHierarchy that takes as parameters the
names of the class and subclass. It should be called like this:

refactoring.collapseHierarchy("A", "B");

3. Create a new subclass from a class. The same as previous item except that the new class inherits
from the old one.

4. Move instance variables and methods to the superclass.
This refactoring should be done by methods moveIVToSuperclass and moveMethodsToSuperclass.

Method moveIVToSuperclass takes as parameters the class name and an array with the instance vari-
ables to be moved. Example:

moveIVToSuperclass("UndergraduateStudent", new Object[] {
"course", "universityName" });

Method moveMethodsToSuperclass is similar.

5. Change the name of a method. Change the method name in its class and in all superclasses
and subclasses. All the calls should be changed too. This refactoring should be done by method
changeMethodName that takes as parameters the class and method names (new and old). Example:

changeMethodName("Student", "getCourse", "getStudentCourse");

6. Replace accesses to public or private instance variables by calls to get and set methods. This
refactoring should be done by method replaceAccessByCalls that takes as parameters the class and
instance variable names. Example:

replaceAccessByCalls("Student", "course");

7. Change a class name. Example: changeClassName("Teacher", "Professor").

2

