
The Easy Language

José de Oliveira Guimarães
Departamento de Computação

UFSCar - São Carlos, SP
Brasil

e-mail: jose@dc.ufscar.br

March 19, 2004

1 Introduction

Easy is a very simple and easy to learn programming language featuring modules and basic procedural
constructs. An example of a program in Easy is shown in Figure 1. The reader will immediately note
that semicolons (;) are not used in the language.

1.1 Modules

A program in Easy is composed by one or more modules. A module is composed by an import list, an
export list, a list of module constants, a list of module variables, and a list of routines, in this order.
One or more lists may be absent. All are optional. A module may export constants, variables, and
routines. The exported items are public — they can be used by other modules that import the module.
In the example, module main imports module Math and therefore it can use routine factorial in

sum = sum + Math.factorial(value)
The module name should always precede the identifier name.

Routine factorial could be used because it was exported by module Math:
module Math

export factorial
...

end Math
The keyword end that ends a module must be followed by the module name. Of course, a module
only imports modules defined textually before it.

Every program must have a module called main with a parameterless routine called run that
returns nothing. The program execution starts at run, which must be exported by module main.

1.2 Comments

Anything between { and } is a comment. Nested comments are not allowed.

1.3 Types

There are only three types in Easy: int, bool, and String. Type int represents integers and its
literals must be between 0 and 32767. Any number of zeros before the number is allowed. The bool
type has only two values: true and false.

1

{ This is a comment }
module Math

export factorial
{ factorial is a function taking an integer as parameter and returning
an integer. It is exported and can be used by other modules }

routine factorial(int n) -> int
is

if n > 1
return n*factorial(n-1)

else
return 1

end factorial
end Math

module main
import Math
export run
const int Max = 10 { Max is a module constant }
var int sum { sum is a module variable }
{ f is a procedure taking no parameters. It has a local variable n and calls
function factorial of module Math }

routine f
local int n { declaration of a local variable }
is

{ getInt returns an integer read from the standard input }
n = In.getInt
if (n > Max) or n < 1

begin
Out.writeln("Number out of limits: ", n)
return
end

sum = 0
loop

value = In.getInt
sum = sum + Math.factorial(value)
n = n - 1

{ when n <= 0, the loop ends }
exiton n <= 0

endloop
Out.writeln(sum)

end f

routine run is f end run
end main

Figure 1: An example in Easy

2

Unless stated otherwise, the arithmetical, comparison, and logical operators follow the rules of
language C. The comparison operators may be applied to the types int and bool. Consider that true
> false. Of course, both operands should belong to the same type. The resultant value has type
bool.

A String literal is anything between double quotes ("):
"Hello !!!"
"He said ’hello !!!’"

The arithmetical operators take integers and return integers. The comparison operators always
return values of type bool.

1.4 Identifiers

Identifiers are composed by any number of letters, digits, and underscore (). They should have at
least one letter. The following identifiers are valid:

count, 2nd, result, 0123456789_ten 012w
Note that an identifier can begin with a number. Upper and lower case letters in identifiers are
considered equal. However, the language keywords should always be in lower case.

1.5 Scope

The scope of a module constant, variable, or routine is the place of declaration to the end of the
module. Of course, an imported identifier can be used outside its original module, like factorial in
the example. It should always be preceded by the module name. Only public (the exported) identifiers
can be used outside its module.

The scope of local variables and parameters is the whole routine. A local variable cannot have the
same name as a parameter. A module variable cannot have the same name as a module constant. A
routine cannot have the same name as a module variable, constant, or routine. A local variable or
a parameter can have the same name as a module variable or constant. However, it would hide the
module identifier. Inside a module M with identifier I, one cannot access I using “M.I”. The code
below is illegal.

module M
export f
var int I
routine f

local bool I
is

I = false
M.I = 0 { compile error !!! }
...

end f
end M

1.6 Assignments

An assignment
v = expr

is valid if the type of v is the same as the type of expr. The same rules apply to parameter passing
and return of values in functions.

3

1.7 Routine Call

A parameterless routine should be called without parentheses:
process
v = calculate
Assume process is a routine taking no parameters and returning nothing and calculate is a param-
eterless routine returning an int. If the routine has one or more parameters, we should use ():
v = factorial(n)
printPersonData("Marcia", "Penapolis", 27)

The real parameters should have the same types as the corresponding formal parameters (those
declared in the routine). The return value of a function is given by the return command:

return expr
The expr type should be the same as the function type. A return may appear in a routine without
return type. It should not take any parameters.

1.8 Decision Statements

The syntax of the if command is

if Expression
Statement

[else Statement]

in which [and] denote an optional item. Note that there is no then. Expression should have type
bool.

1.9 Loop Statements

There is only one loop statement:
LoopStatement ::= "loop" StatementList "endloop"

The statements are repeated till the expression in one exiton statement becomes true. For example,
the loop

i = 0
sum = 0
loop

sum = sum + i
i = i + 1
exiton i >= 10

endloop

repeats from i = 0 to i = 10. Statement exiton may appear anywhere inside the statement. It
always refers to the inner loop statement:

...
loop { loop 1 }

sum = 0
loop { loop 2 }

...
exiton n < 0 { refer to loop 2 }

4

...
endloop
exiton sum > Max { refer to loop 1 }
sum = sum + n

endloop

Of course, exiton can only appear inside a loop command.

1.10 Input and Output

Input from the standard input is made by the getInt and getString functions of the predefined
module In:

n = In.getInt
name = In.getString

Of course, getInt returns an int and getString returns a String.
Output to the standard output is made by the write and writeln routines of the predefined

module Out:
Out.writeln("The sum is ", sum)

Any number of int and String values can be parameters to these routines. write prints all its
parameters separated by a white space. writeln does the same and at the end it prints a newline
character (it may be CR/LF in some machines).

2 The Easy Grammar

This section defines the Easy grammar. The reserved words and language symbols are quoted. Any
sequence of symbols between { and } can be repeated zero or more times. Any sequence of symbols
between [and] is optional. Parentheses group symbols. For example,

D ::= (A|B) { C }
means A or B followed by any number of C’s.

The rules IntValue and StringValue represent integer and string literals. Id represents identifiers.
Note that the input and output routines of modules are not in the grammar — they belong to the
predefined modules In and Out.

Program ::= Module { Module }
Module ::= “module” Id

[ImportList]
[ExportList]
[ModuleConstDecList]
[ModuleVarDecList]
[RoutineList]
“end” Id

ImportList ::= “import” IdList
IdList ::= Id { “,” Id }
ExportList ::= “export” IdList
ModuleConstDecList ::= “const” ConstDec { “,” ConstDec }
ConstDec ::= BasicType Id “=” BasicValue

5

BasicType ::= “int” | “bool” | “String”
BasicValue ::= IntValue | BoolValue | StringValue
BoolValue ::= “true” | “false”
ModuleVarDecList ::= “var” ModuleVarDec { ModuleVarDec }
ModuleVarDec ::= Type IdList
Type ::= BasicType
RoutineList ::= { “routine” Id [FormalParamDecList] [ReturnType]

[LocalVarDecList] “is” StatementList “end” Id }
FormalParamDecList ::= “(” FormalParamDec { “,” FormalParamDec } “)”
FormalParamDec ::= Type Id
ReturnType ::= “->” Type
LocalVarDecList ::= “local” LocalDecList { LocalDecList }
LocalDecList ::= Type IdList
StatementList ::= { Statement }
Statement ::= AssignmentStatement | IfStatement | LoopStatement |

RoutineCall | “exiton” |
CompositeStatement | ReturnStatement

AssignmentStatement ::= LeftValue “=” Expression
LeftValue ::= [Id “.”] Id
IfStatement ::= “if” Expression Statement [“else” Statement]
LoopStatement ::= “loop” StatementList “endloop”
RoutineCall ::= Id [“.” Id] [“(” ExpressionList “)”]
CompositeStatement ::= “begin” { Statement } “end”
ExpressionList ::= Expression { “,” Expression }
Expression ::= SimpleExpression [Relation SimpleExpression]
Factor ::= BasicValue | Id [“.” Id] | RoutineCall |

“(” Expression “)” | “not” Factor
HighOperator ::= “∗” | “/” | “and”
LowOperator ::= “+” | “−” | “or”
Relation ::= “==” | “<” | “>” | “<=” | “>=” | “<>”
ReturnStatement ::= “return” Expression
Signal ::= “+” | “−”
SignalFactor ::= [Signal] Factor
SimpleExpression ::= Term { LowOperator Term }
Term ::= SignalFactor { HighOperator SignalFactor }

6

