
Experiences in Building a Compiler for an Object-Oriented

Language

José de Oliveira Guimarães
Departamento de Computação

UFSCar, São Carlos - SP, Brazil
jose@dc.ufscar.br

Abstract

Traditionally books on compiler construction focus on procedural languages leaving some
questions on compilation of object-oriented languages unanswered. This article presents some
problems found in the building of a compiler for the object-oriented language Green using
Java. The solutions used for these problems are exposed and whenever possible alternatives
are discussed. We hope to provide programmers with some hints and caveats on compilation
of object-oriented languages.

Keywords: Compiler construction, object-oriented languages, Java, Green.

1 Introduction

This article describes some problems encountered during the construction of a compiler, in
Java, for the object-oriented language Green [5]. These problems are, in general, related to
the programming of the compiler itself and not to topics well explored in the literature such
as parsing and code generation. Compiler construction books [1] [3] [4] focus on techniques for
lexical analysis, parsing, building of abstract syntax tree, semantic analysis, and code generation
and optimization. They explain in high level how to implement a compiler, which is sufficient
for the implementation of a small Pascal compiler but insufficient for the implementation of a
much more complex object-oriented language such as Green.

This article exposes some problems found in the building of the Green compiler and shows
how the problems were solved. To begin with, let us show a little bit of Green. This is a
statically-typed object-oriented language which supports garbage collection, parameterized or
generic classes, method overloading, classes as classless objects, arrays as classes, separation of
subtyping and subclassing, metaobjects, and an introspective reflection library.

Figure 1 shows a class Store in Green which has methods get and set and instance variable
n. The type of a class is the set of public method signatures. The signature of a method is its
name, parameter types, and return value type, if any. Then, the type of Store is

{ get() : integer, set(integer) }
Whenever an object of type Store is expected, as in an assignment or parameter passing, we
can use an object of a class that has at least the same method signatures as Store (methods
get and set). This is checked at compile time.

Figure 2 shows the declaration of a class object. That is, an object that represents the class
Store. This object is similar to objects of prototype or delegation-based languages — it does
not have a class. The compiler adds a “new() : Store” method to this object. This method
returns a newly created Store object.

class Store
public:

proc get() : integer
begin
return n;
end

proc set(pn : integer)
begin
n = pn;
end

private:
var n : integer;

end

Figure 1: Class Store in Green

object Store
public:

proc getMax() : integer
begin
return 2002;
end

end

Figure 2: Class object Store

The declaration of a class object and the corresponding class should be put in the same file
which must have the name of the class.

Class Store of Figure 1 declares the methods and variables objects of Store have at run
time. Class object Store of Figure 2 defines a classless object representing the class itself. This
object may receive messages as any other:

m = Store.getMax();
Although class objects have no class, they do have a type and the subtype rules also apply to
them. The type of class object Store is

{ getMax() : integer, new() : Store }

In building the Green compiler we have met several problems whose solutions are not com-
mented in the literature. These problems are related to forward references, cross references,
parameterized classes, code generation tools, management of the Abstract Syntax Tree (AST),
etc. In the next sections we describe each of these problems and the solutions we used.

Our compiler builds an AST of the Green code and uses it to generate code. Each node
of the AST is a Java object which has a method gen that generates code, also in Java. The
compiler takes as input a text file which contains a list of all classes that compose the program.
Then, when it finds a declaration “var a : A;” when compiling the code of a class, it knows
whether A is a valid class or not.

2 Forward and Cross references

In Figure 1, variable n is referenced in methods get and set although it is declared at the end of
the class. When the compiler finds n in method set, it does not know what “n” is: a variable, a
constant, a method name, or something else. Then it cannot build the AST node corresponding
to “n = pn”. Assume the AST should have all the information available in the program. This
will be justified below.

A similar problem occurs when a class A declares a variable of class B and vice-versa. To do
semantic analysis in class A we need to know the methods declared in B and vice-versa. So we
cannot do two things in a one-pass compiler: to build the AST and do semantic analysis.

We opted for a compiler with two passes: the first collects interface information of all classes
that compose the program and the second builds the AST and does semantic analysis. So there
are two lexical and two syntactic analyses.

The first step creates one object for each program class. The object describes the class
interface. The interface contains not only the method signatures1 but also the instance variables.

The types of parameters, instance variables, and return of methods are represented as strings
in the interface object. That cannot be different, for a type may be a class not yet analyzed. But
this is unfortunate, since later on the compiler will need detailed information on these types,
such as the methods each one defines.

To solve this problem, each interface object has a reify method that sets each type that
appears in the interface to the interface object that represents that type. Of course, each type
is represented by two variables, a String and an interface. The last variable is set by reify.

The compiler collects all program interfaces and puts them in a hash table. Then it calls the
reify method of each object interface.

To do two lexical and two syntactic analyses is not the only solution. Two others were
abandoned: the first is to do only one lexical and syntactic analyses. The AST built in the

1The signature of a method is composed by its name, parameter types, and return type (if any).

syntactic analysis would not be correct because some information would be missing, like what is
“n” in the statement “n = pn” of method set of Store. In these cases the compiler would use
fake AST objects that would be latter replaced by real ones. That is, “n = pn” would result
in the creation of an AssignmentStatement object of the AST which references an object of
FakeVariable which keeps the string “n” — we don’t know at this point what “n” is. The
AssignmentStatement object would also reference a Parameter object that represents “pn”.
We know what pn is since it is a parameter. And parameters are declared before they are used.

After compiling the whole class Store, we know “n” is an instance variable and then the
compiler can replace the FakeVariable object by an InstanceVariable object.

This solution is complex because we would have to assure the trick described above works
in all situations and with all AST classes. Another problem is that sometimes the fact an AST
object belongs to a class forces another AST object (that references the first) to belong to
another class. It is as if “n” in the example above belonged to a class StaticVariable we would
have to change the class of the object AssignmentStatement to StaticAssignmentStatement.
Complex, at least.

One could argue that the AST is an abstract tree and therefore should not contain detailed
information such as whether “n” in “n = pn” is an instance or static variable. That is not true.
In our compiler, the AST should not be too abstract because it is used for code generation,2

an operation that demands some detailed information on n and pn. For example, suppose the
compiler generates machine code. The AST needs to know whether n is static or instance
variable in order to generate code for “n = pn”. The generated code for these two options will
be completely different from each other.

Our compiler uses a symbol table whose entries are of the kind (name, obj). name is the
name of the class, variable, and so forth. obj is the name of the AST object describing name.
Therefore the AST should have all the existing information on identifier name. This will be used
by the semantic analyzer, which accesses obj after looking for it in the symbol table. Then the
symbol table points to AST objects which are expected to have the necessary data for semantic
analysis.

If the AST is too abstract, it will not supply the data needed by the semantic analyzer.
Then this data must be found in some other place. One solution is to attach to the symbol
table objects containing the data. Then we would need to create new classes for these objects,
making the design complex because information on identifiers will be in two different places, the
AST and the symbol table.

Our AST has all the information on the program but it can only be built by a two-pass
compiler. A really abstract syntax tree can be built in a single pass compiler. However, semantic
analysis will be more difficult to do than in a two pass compiler. It can only be done after the
AST is built and the syntactical analysis ends. Then the semantic analyzer will have to build
object trees containing the data it needs, which will not be found in the AST. And it will have
to keep information on the program text, which will be used in printing error messages. If some
semantic error occurs, the compiler should print an error message, the offending line, and its
number. A little bit complex.

The other alternative solution for doing two lexical and two syntactic analyses is to do just
one lexical analysis with two syntactic analyses. The tokens found in the lexical analysis would
be kept in an array and used in both syntactic analyses.

That is not a good solution. The error messages need the number of line and column of each
token. Then the compiler would need to keep these data for all tokens — but these information

2Each AST class has a method gen that generates code for that node and calls the gen methods of the AST
objects down in the tree.

would only be used in case of an error. A waste of computer power.
Our compiler makes two double analyses in the code. This may not be the fastest, but it is

probably the simplest solution.

3 Parameterized Classes

Suppose we have two parameterized classes A and B with two parameters each:

class A(U, V)
// methods were omitted
private:

var x : B(V, U);
end

class B(G, H)
private:

var y : A(G, H);
end

The use of A in a declaration
var w : A(char, Point);

causes the creation of a real class “A(char, Point)”. This class is obtained by replac-
ing U by char and V by Point in the body of A. Inside A, the declaration of x becomes
“x : B(Point, char)” and the compiler must create “B(Point, char)”. To create this class,
it replaces G by Point and H by char which demands the creation of “A(Point, char)”. In
its turn, “A(Point, char)” demands the creation of “B(char, Point)”, which demands the
creation of “A(char, Point)” which has already been created and the cycle ends:

A(char, Point) −→ B(Point, char) −→ A(Point, char) −→
B(char, Point) −→ A(char, Point)

Then to create a parameterized class is not as simple as “replace the formal by the real
parameters”. And when replacing the parameters, care must be taken to not replace “param-
eters” inside strings. In fact, there is a worse problem: the parameter may be inside a Java
block, which is a piece of Java code inside a Green class. A Java block is delimited by the words
java$begin and java$end. Let us see an example:

java$begin
// this is a Java code inside a Green code

w = new U[max];
...
java$end

In this case, U must be replaced not by char or Point but by the name in Java of char or Point
— which is char (the same) or _Point, whenever the case. Green names are translated to Java,
in general, by prefixing them by underscore.

The creation of a real class A(char, Point) from a parameterized class A is called instanti-
ation of A. In our compiler a real class A(char, Point) is created from parameterized class A
by replacing U and V by char and Point in a copy of the text of A. The compiler could use other
mechanism to instantiate A. It could first analyze class A and build an Abstract Syntax Tree
(AST) of it. Then a copy of the AST is made and the parameters U and V, represented by objects

in the AST, are replaced by objects representing the types char and Point. This mechanism
saves a lexical and syntactic analysis of A for each new instantiation. However, to make a copy
of the AST of A is complex for neither shallow nor deep copy are appropriate. Therefore, to
implement this copy we would need to add to almost every AST class a copy method. And
there are more than one hundred of them.

4 Mapping of the Green Type System to Java

The Green type system is more general than the type system of the target language of the
compiler, Java. This is because Green separates subtyping from subclassing. A class B is
subtype of class A if B has at least all method signatures of A, regardless B inherits from A or
not. If B is subtype of A, an object of class B can be used where an object of A is expected, as
in an assignment

a = b
in which the declared types of a and b are A and B.

In Java, this assignment is correct if B is a descendent from A. Here we consider that B may
inherit from class A or B may implement interface A, directly or indirectly.

Since Green does not demand that B be an A descendent, Green is more general than Java
— there are less requirements in the former than in the latter language. In this example, Green
only requires that B has all method signatures of A.

Then we have a problem, since the compiler translates Green to Java, a more general to a
more restrictive language. However, we will soon discover that this incompatibility is not real.

To show how the Green type system is mapped into Java, we will use an example. Suppose
a class B in Green has a method

proc m(x : integer) : boolean
among others.

Every Green class is translated to a Java class with the methods defined in the Green class.
B is translated to _B in Java. If B inherits from A, B inherits from A. If B does not inherit
from any class, B inherits from Any. Any in Green is the top-level class — every class inherits
directly or indirectly from it.

A Java interface is generated for every B method. For m, the interface is

interface m1integer$boolean {
boolean m(int x);

}

Class B implements the interfaces corresponding to all its methods, including the inherited ones:

class _B extends _Any
implements

m1integer$boolean,
...

{
... // methods and instance variables

}

Now we show how variable declaration and method call are translated to Java. Let us study the
code

// Green
var b : B;
...
ok = b.m(0);

which generates

// Java
_Any _b;
...
_ok = ((m1integer$boolean) _b).m(0);

Every variable in Green whose type is a class is declared in Java with the type Any. Suppose
then x and y are variables in Green whose types are classes and that “x = y” is type correct.
This assignment generates “_x = _y” in Java which is also type correct since both x and y
have the type Any.

Returning to the example, the call “b.m(0)” in Green cannot be translated to “_b.m(0)”
in Java because the class of b, Any, does not define a m method. Then it is necessary to cast
b into interface m1integer$boolean and then call m. But how can we be sure the object b
refers to at runtime belongs to a class that implements m1integer$boolean ?

Code generation will only take place if there is no error in the Green code. Then assuming
“b.m(0)” is type correct, at runtime b points to an object that has a method

proc m(x : integer) : boolean
This is guaranteed by the type system of Green. In the general case we do not know the class
of this object — it may be B or any of its subtypes. But we do know the class of the object
pointed to by b has a m method. Therefore the corresponding Java class implements interface
m1integer$boolean. Then b can be cast to this interface and the method called.

5 General Implementation Problems

This section presents some problems that are independent of the language Green.

5.1 Tools for Compiler Construction

The first version of the Green compiler used CUP [7] and JLex [2], which are the YACC/Lex
for Java. These tools were abandoned for several reasons:

1. they generate code for the lexical analyzer and parser that is very difficult to debug. We
can understand neither the code they generate nor our own code, which is interwoven in
the generated code and modified by the tools;

2. a production of CUP like

VarDec ::= VAR ID:name COLON Type:t SEMICOLON {:
RESULT = new VarDeclaration(name, t);
:}

allows one to manipulate name and t given by terminal ID and rule Type. But VarDec
cannot pass parameters to ID and Type, which is sometimes necessary and therefore de-
mand the use of global variables. These global variables introduce a lot of errors because
we never know when they are correctly set up;

3. VarDec returns a value (with RESULT). Then it must have been previously declared as re-
turning a VarDeclaration object in the beginning of the text defining the CUP grammar.
This declaration should be at the VarDec declaration to help to keep consistence between
declaration and use;

4. some grammar errors are only detected at runtime, as to use the return value t of Type if
Type does not return anything. For short, CUP does not do semantic analysis in its input;

5. we spend more time to do a correct parser using CUP than by hand using the recursive
descendent method. This may not to apply to everybody but certainly applies to most
people, including the author of this article, which has experienced both methods. The
same applies to JLex;

6. error recovery is at least difficult. It cannot be fine-tuned to our needs, the mechanism for
recovery is fixed by CUP;

7. the error messages CUP and JLex emit are cryptic, very difficult to understand. But this
problem can be corrected by perfecting these tools.

We ended doing all the compiler by hand using the recursive descendent method by the
reasons exposed above.

The advantage of using tools like CUP is that the language grammar is mirrored in the text
given as input to the tool. This guarantees the compiler is faithful to the language. The same
cannot be said about recursive descendent parsers built by hand. Their codification usually
demand modifications in the language grammar. And mismatches between the grammar and
the syntactic analyzer are easily introduced.

5.2 Abstract Syntax Tree

The Green Abstract Syntax Tree (AST) has more than one hundred classes. Since Java requires
a file for each class, we have more than one hundred files for the AST, which imposes tremendous
difficulties in managing this library. During the compiler development, the AST classes need to
be modified at all times. And one modification in one class usually triggers changes in other
classes. Then it would be nice to have all the AST in just one file, which is much easier to
manipulate then one hundred. And that was just what we did.

We created a tool called classgen [6] that takes as input a text file with all classes of the
AST and produces a file for each class. Some commands for the tools can be embedded in the
input file such as to produce get and set methods for instance variables.

6 Conclusion

This article exposed some of the problems found in the building of a compiler for the Green
object-oriented language. A lot of more specific problems were left for lack of space. These are
related to:

1. method overloading — how to implement it, what data structures and search methods
should be used at compile time;

2. code generation for the Green exception system, assertions, arrays, basic types, introspec-
tive reflection library, etc;

3. separation of class and type in Green — a type is a set of method signatures, even class
objects, which are classless, have types;

4. name server. There is a class that supplies Java names used in the generated code.

This paper intended to fill a gap between books on compiler construction, which teach the
subject in terms of high level concepts, and real compilers, which are too difficult to understand
by reading their code. Unfortunately we were only able to discuss a small part of our experience
with the Green compiler in this article. We hope to put more material on the compiler at [5].

Aknowledgement. This work was partially financed by FAPESP under process number
99/13006-8.

References

[1] Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler Design. Addison-Wesley Pub-
lishing, 1977.

[2] Ananian, C. Scott. JLex: A Lexical Analyzer Generator for Java.
http://www.cs.princeton.edu/~appel/modern/java/JLex

[3] Appel, Andre W. Modern Compiler Implementation in Java. Cambridge University Press,
1998.

[4] Grune, D.; Bal, H.; Jacobs, J.H. and Langendoen, K. Modern Compiler Design. John Wiley
& Sons, 2000.

[5] Guimarães, José de Oliveira. The Green Language. Available at
http://www.dc.ufscar.br/~jose/green/green.htm.

[6] Guimarães, José de Oliveira. The Class Generation. Available at
http://www.dc.ufscar.br/~jose/courses/cc/classgen.html.

[7] Hudson, Scott E. CUP Parser Generator for Java.
http://www.cs.princeton.edu/~appel/modern/java/CUP

