The Krakatoa Language

José de Oliveira Guimaraes
Departamento de Computacao
UFSCar - Sao Carlos, SP
Brasil
e-mail: jose@dc.ufscar.br

August 12, 2015

The Krakatoa language is a subset of Java with a few additions/modifications. Krakatoa supports
all the basic concepts of object-oriented programming such as classes, inheritance, and polymorphism.
Unlike Java, a program is composed by a single source file. Every class can only refer to the classes that
appear textually before it in this file.

An example of a program in Krakatoa is shown below

class Store {
private int n;
public int get() {
return this.n;
}
public void set(int n) {
this.n = n;
}
3

class Program {

public void run() {
Store s;
int a;
s = new Store();
read(a);
s.set(a);
write(s.get());

Every program must have a class named Program with a parameterless method called run. To start
the execution of a program, the runtime system creates an object of class Program and sends to it a
message run.

In the following sections we define the main elements of the Krakatoa language.

1 Classes

A class has the format

class Name {
public and private members

}

in which Name is an identificar, the class name, that should be different from all previously declared
classes. A member of a class may be a private variable or a public or private method. The next example
shows the declaration of a class with private instance variables x and ok and public methods sum and
set0k. Note the words “private” or “public” precedes each declaration. A class may have zero members.
The run method of class Program must be public and it should not take any parameters.

class A {

private int x;

public int sum(int y) {
return this.x + y;

b

private boolean ok;

public void setOk(boolean ok) {
this.ok = ok;

b

The syntax for method declaration is

public ReturnType methodName(parameter-list) {
Statement-List
}

The return type may be a class, a basic type (int, boolean, or String), or void (no return value). The
syntax for local variable declaration is equal to Java and described in the next section. The name of a
method or instance variable should be different from the name of the previous members of the class. A
member of a class is an instance variable or method. Statements include declaration of variables. So,
int x, y;
counts as a statement.
A static variable is declared inside a class as

static private Type variableName;

A static variable can only be accessed by a static method, which is made through the syntax
ClassName.variableName

A static variable must be private and it can have the same name as an instance variable of the same

class.

A method may be declared static:

static public ReturnType methodName(parameter-list) {
Statement-List
}

In a class, no two static methods may have the same name. Different semantic rules apply for static
methods, as in Java:

e a static method is called using the class name, as in “Clock.getCurrentTime()” in which Clock
is the class name. This syntax must be used even when this call is inside class Clock. A static
method can only call a previously declared static method;

e static methods can be public or private;

e keyword this cannot be used (see Section 1.3) inside a static method. Therefore neither non-static
methods of the current class can be called inside a static method nor instance variables can be
accessed. Of couse, static methods can be called and message sends to variables and parameters
are legal;

e keyword super (see Section 1.1) cannot be used inside a static method;
e regular, non-static methods, can call static methods;

e a static method cannot have the same name as another static method of the same class. But the
name may be equal to the name of a non-static method;

e static methods of classes in a inheritance hierarchy are completely independent of each other. That
means that if B inherits from class A, a static method of class B may have the same name as a
class-A method;

e a private static method can be called by any other static or non-static method of the class in which
it was declared.

Variables and parameters whoses types are classes are in fact pointers, as in Java. Therefore, in

Store s, t;
s = new Store();
t = s;

the declaration of s and t does not create objects of class Store. An object of this class should be
dynamically created with new:
s = new Store();
Memory deallocation is made by the garbage collector. Class String is much like a class. However, it is
not possible to create a String object with new.
There is a global value null that can be assigned to any variable whose type is a class. null represents
a value of a class that does not have methods.

1.1 Inheritance

Inheritance of a classe A by a class B is made as
class B extends A {

3

Class B inherits all instance variables and methods of A. A public method of A may be redefined in B if its

signature (name, return value type, and parameter types) is not changed. The redefined method should
also be public. It is allowed to redefine in B a private method of A. It is as if B defined a new method
since no one knows the private methods of A.

Class B has no access to private instance variables and methods of A.

The statement

super.m(pi, P2, ... Pn)
inside a B method orders the compiler to look for a m method starting at the superclass of B, A. If it is
not found in A, the search continues in the superclass of A and so on. The parameters p1, p2, ... pn, must

be convertible (section 2.5) to the formal parameters to the m method found in the search.

Message sends to super are linked at compile time to a specific method of a superclass. No search
for a method is made at runtime. Note that super cannot be used in static methods.

A final class is declared by using the keyword “final” before “class” as in

final class Earth {

}

A final class cannot be inherited. All message sends to its methods can be static. That is, there is no
need of a search for a method at runtime.

A “final” method, declared as

final public void get() { ... }

cannot be redefined in a subclass. Only public methods can be final and a final class cannot declare a
“final” method (since the methods of a final class are already final). No other restrictions apply. A
class C may extends a class B that extends a class A that defines a method m redefined in B and C. The m
method of C may be declared final.

1.2 Message Sends

The statement
s.calc(b)
is the sending of the message “calc(b)” to the object pointed to by s. This message send is valid if:

1. the declared class of s or one of its superclasses has a public method with name calc.

2. this method calc takes a sole parameter and the type of b can be convertible (see section 2.5) to
the type of the formal parameter of calc.

At runtime, the runtime system (RTS) makes a search for a method calc in the class of the object
referred by s. If it is not found there, the search continues in the superclass of the class of this object,
the superclass of the superclass, and so on. When a method is found, it is called. The RTS will always
found a adequate method except when the variable points to null.

A method that does not return a value can be used as a statement:

stack.print();
A method that returns a value must be called only within an expression as in
if (stack.getSize() > 0) insert(0);

1.3 this

The keyword this represents a variable whose type is the class in which it is being used. this points
to the object that received the message that caused the execution of the method. The same as in Java.
Using class Store (first example), the code

s = Store.new();

s.set(12);

causes the execution of method set of Store. Inside this method, this points to the same object as s.
This keyword is used to handle the instance variables and to call private and public method of the class
— observe class Store. The value of this cannot be modified by an assignment.

In a message send this.m() inside a class A, the compiler searches for a private method m. If none
is found, the search continues in the public methods of A. If none is found, the search continues in the
public methods of the superclass of A, the superclass of the superclass, and so on.

2 Basic Krakatoa Elements

2.1 Comments

Comments in the language are put between “/*” and “*/” and between // and the end of the line.
Nested comments are not allowed, as in
/* comment /* another comment */ end of the first comment */
The comment ends in the first */ found. Note that “/*” and “*/” may appear inside a comment
started with // — they will not mean a comment. The converse is also true.

2.2 Basic Literals and Types

There are only three basic types in Krakatoa: int, boolean, and String. Literals of type int must be
between 0 and 32767. Any number of zeros before the number is allowed. Therefore the numbers
00000000000001
00000000000000
are legal. Type boolean has only two values: false and true.
String literals must appear between quotes: "Do you always come here?"
The backslash \ can be used to remove the meaning of " and the backslash itself. In fact, the string
"\c" has the same meaning as in C regardless of the character ¢, which can be anything.
The comparison operators <, <=, > >= can only be applied to int values. The comparison operators
== and != can be applied to int and boolean values.
The operators == and != can also be used to compare expressions whose types are classes. The result
is a boolean value. In a comparison left == right or left !'= right, if LeftType is the declared type
of left and RightType is the declared type of right, one of three things must occur:

1. LeftType is RightType;
2. LeftType is convertible to RightType. See definition of convertible in section 2.5;
3. RightType is convertible to LeftType.

That is, classes LeftType and RightType must be related by inheritance. All other possibilities are
illegal, for we know the expression left == right will evaluate to false anyway.
Operators == and != can also be used when LeftType (RightType) is String. In this case, RightType
(LeftType) must be String or right (left) must be null.
Operators +, *, -, and / apply to int values resulting in int values. The semantics of these operators
is the same as in C.
The binary operators && and || and the unary ! accept boolean operands and have the usual
meaning. The evaluation of the expression
left && right
start in left. If left is false, all the expression is considered false, even without the evaluation of
right (which can be an expression). If left is true, right will be evaluated.
The expression
left || right
is true if left is true. If 1left is false, the result has the value of right.
The type of a variable, parameter, or return value of a method must be a basic type (int, boolean,
or String) or a previously declared class, which may be the current class.

2.3 Identifiers

Identifiers are composed by letters, digits, and underscore (_), starting with a letter. Here are some
examples of valid identifiers:
getNum x0 y1 get_Num
The identifiers
_main 3ab get$Num write
are ilegal. “write” is illegal because it is a keyword. The list of keywords of Krakatoa is

boolean break class else
extends false if int
new null private public
read return static String
super this true void
while write final

There is no limit in the number of characters of an identifier. Upper and lower case letters are
considered different. All identifiers must be declared before used. None can be declared twice in the
same scope (see below).

2.4 Scope

The scope of a class name is from the place it appears to the end of the file. The scope of an instance
variable or method is from the place it is declared to the end of the class. However, instance variables
and methods of the object that received the message must be handled using the keyword “this”:

this.n = 0;

x = this.m(5);

this.p.set(0);

Therefore a code like
set (0);
is always illegal because there is no receiver to the message “set (0)”.

The scope of local variables and parameters of a method is from the place of declaration to the end
of the method body. A local variable cannot have the same name as a parameter of the same method.
Local variables and instance variables are always distinguished because instance variables are accessed
using this. Local variables have precedence over class names, which are global.

2.5 Assignment

The assignment of an expression rightExpr to a variable left is made as

left = rightExpr;
If LeftType is the declared type of left and RightType the type of rightExpr, this statement is valid
if:

e LeftType is a basic type (int, boolean, or String) and LeftType is RightType;
e RightType is a class which is subclass of LeftType. We consider that a class is subclass of itself;
e LeftType is a class and rightExpr is value null.

If any of the items is valid, we say that RightType is convertible to LeftType.
The same rules apply to parameter passing to methods and return value by means of the command
return. That is, statements like
bb.m(pr) ;
return r;
are valid if assignments

pf = pr;

X =r;
are valid, in which pf has the same type as the formal parameter of method m and x is a variable with
the same type as the return value type of the method in which this statement is.

2.6 Decision Statement

The if statement has the form

if (expr)
Statement

else
Statement

The part

else
Statement

is optional. expr must be a boolean expression.

2.7 Repetition Statements

The statement
while (expr)
Statement;
means that Statement is to be executed while the boolean expression expr evaluates to true. This
loop may be ended by executing statement break. Of course, it is illegal to use break outside a while
statement.

2.8 Method Return Value

A method returns a value with the command

return expr;
If the type of the return value expr is U and the declared return type of the method is T, then U must be
convertible to T (see section 2.5). That is, an assignment

t = u;
should be legal, in which the types of t and u are T and U, respectively. A method without a return
value type cannot have a return command. A method with return value should have at least one return
command.

2.9 Input and Output

Input is made by the statement read:
read(IdList);
where IdList is a list of one or more variables (local, parameter, static or instance) of the type int ou
String. The statement
read(aj, ags, ... a,)
is equivalent to
read(aj);
read(as) ;

read(ay) ;
in which read(a) is equivalent to the following language-C code:
{ char __s[512];

gets(__s);
sscanf(__s, "%d", &_a); }
if a has type int. If the type of a is String, read(a) is equivalent to

char __s[512];
gets(__s);

_a = malloc(strlen(__s) + 1);
strcpy(_a, __s);

b

in C.
Each variable is read in a separate line in the standard input.
The statement
write(expr;, exprs, ... expr,)
writes the expressions in the standard output. It is equivalent to
write(expry);
write(expro);

write(expry);
The number n should be greater than zero. The statement write(expr) is equivalent to the following
code in C if expr has type int:

printf("%d ", expr);
If the type of expr is String, this statement is equivalent to

puts (expr);
Boolean expressions cannot be parameters to write. Note that write uses exactly one space after the
printed number.

Statement writeln(expr) is equivalent to write (expr) followed by write("\n").

3 Metaobjects

Krakatoa supports a very limited version of metaobjects. A metaobject is an object that controls other
objects. In this case, a metaobject is an object that controls the compilation process. We have no space
here to describe them completly so we will just explain how the available metaobjects works.

Metaobject ce is a metaobject that communicates to the compiler that there is a compiler error in the
source code. It takes from two to four parameters (the last two ones are optional). The first one is always
the number of the line of the current source code that has the error. The second one is a string with a
description of the error. The third one is the error that the compiler should sign. This is a suggestion
— the compiler implementer is free to use other error messages. The fourth parameter is the method of
the Krakatoa compiler that should be modified in order to make the compiler sign this error.

Q@ce(4, "O nome da classe estd ausente", "Missing identifier",
"comp.Compiler.classDec()")

class {
public void run() { %}
}

In this example, the metaobject call @ce(...) informs the compiler that there is an error in line 4. The
error description is

"0 nome da classe estd ausente"
The compiler should issue an error message that is something like

"Missing identifier"
To make the Krakatoa compiler to sign this error, you should change method
comp.Compiler.classDec()

After compiling the source code of this example, the Krakatoa compiler will issue a warning if it did
not sign an error message. It should. If it signed, it will show the actual error message and the error
message "Missing identifier". Then the user can compare if the compiler really signed the error with
the correct error message. The Krakatoa compiler will also check if the line number of the error signed
by itself is 4.

There is just one more metaobject: nce. It does not take parameters and informs the compiler that
there should be no compilation errors in the source code. If there is any, the Krakatoa compiler will point
out that it has a flaw.

Once

class Program {
public void run() { }
3

4 The Krakatoa Grammar

This section defines the language grammar. The reserved words and language symbols are shown between
“and ”. A sequence of symbols between { and } can be repeated zero or more times and a sequence of
symbols between [and | is optional. Parentheses group symbols. For example,
D:=(AIB){C}

means A or B followed by any number of C’s.

The non-terminal StringValue represents a string of characters between quotes as in Java: "Hi !!".
This non-terminal is not in the grammar.

The initial grammar non-terminal is Program.

AssignExprLocalDec= Expression [“=" Expression | | LocalDec
BasicType = “void” | “int” | “boolean” | “String”
BasicValue = IntValue | BooleanValue | StringValue
BooleanValue = “true” | “false”
ClassDec = “class” Id [“extends” Id | “{” MemberList “}”
CompStatement = “{” { Statement } “}”
Digit =07 | ... | 497
Expression = SimpleExpression | Relation SimpleExpression |
ExpressionList = Expression { “,” Expression }
Factor ::= BasicValue |

“(” Expression “)” |

“” Factor |

“null” |

ObjectCreation |

PrimaryExpr
FormalParamDec ::= ParamDec { “,” ParamDec }
HighOperator = | C7 | &
Id ::= Letter { Letter | Digit | “.” }
TdList n=1d { ¢ 1d }
IfStat = “if” “(” Expression “)” Statement

[“else” Statement |
InstVarDec ::= Type IdList “;”

IntValue = Digit { Digit }
LeftValue = [(“this” | Id) «” | Id
Letter =“A” | .. |2 a” |]
LocalDec = Type IdList “;”
LowOperator =7 =T AT
MemberList = { Qualifier Member }
Member = InstVarDec | MethodDec
MethodDec = Type Id “(” [FormalParamDec | “)”
“{” StatementList “}”
MOCall = “@ Id [“(” { MOParam })" |
MOParam = IntValue | StringValue | Id
ObjectCreation = “new” Id “(” “)”
ParamDec = Type Id
Program = { MOCall } ClassDec { ClassDec }
Qualifier = [“final” | [“static” | (“private” | “public”)
ReadStat = “read” “(” LeftValue { “,” LeftValue } “)”
PrimaryExpr = “super” “.” Id “(” [ExpressionList | «)” |
Id |
Id “” 1d |
Id “” Id “(” [ExpressionList | 7)” |
Id «” Id “” Id “(” [ExpressionList | “)” |
“this” |
“this” “” Id |
“this” ”7.” 1d “(” [ExpressionList | “)” |
“this” 7.7 Id “.” Id “(” [ExpressionList | «)”
Relation = “=="] “< | T =T] = =
ReturnStat = “return” Expression
RightValue = “this” [“” Id] | Id [<. Id]
Signal = “47 | “=7
SignalFactor = [Signal | Factor
SimpleExpression ::= Term { LowOperator Term }
Statement = AssignExprLocalDec “” | IfStat | WhileStat | ReturnStat “;” |
ReadStat “;” | WriteStat “;” | “break” “” | “” | CompStatement
StatementList = { Statement }
Term ::= SignalFactor { HighOperator SignalFactor }
Type ::= BasicType | Id
WriteStat = “write” “(” ExpressionList “)”
WhileStat = “while” “(” Expression “)” Statement

10

References

[1] Stroustrup, Bjarne. The C++ Programming Language. Second Edition, Addison-Wesley, 1991.
[2] Lippman, Stanley B. C++ Primer. Addison-Wesley, 1991.

[3] Guimaraes, José de Oliveira. The Green Language. http://http://www.cyan-
lang.org/jose/green/green.htm.

11

