
Exceptions and Meta-Level Programming in the Green Language

José de Oliveira Guimarães
Departamento de Computação - UFSCar

São Carlos - SP, Brazil
13565-905

jose@dc.ufscar.br

Reflective programs have a base and a meta level code. The base level is responsible for
the program functionality, what is described in its specification. The meta level helps the base
level do its job by providing services like concurrency control, transparent distribution, fault
tolerance, and so on.

There are two types of reflection: introspective and behavioral. Introspective reflection allows
the program to see its own structure. Behavioral reflection allows the program to change some
parts of itself or its runtime system. At runtime, behavioral reflection is mainly implemented
through metaobjects.

A language supporting introspective reflection supplies a library which allows one to discover,
at runtime, the class of an object, the methods of a class, the superclass of a class, and so on.
The Green Introspective Reflection Library allows us to examine the stack of catch objects at
runtime, the methods of each object, their parameters, etc. Green also supports metaobjects. A
metaobject is attached to an object to control the messages it receives. Every message sent to
the object is redirected to a specific method of the metaobject. One can attach a metaobject to
a catch object and then intercept the calling of a throw method, maybe changing the exception
handling.

The interception (with metaobjects) and introspection of catch objects have obvious uses
by software tools as debuggers. A debugger can easily show the stack of catch objects and the
exceptions they can handle. It can attach metaobjects to catch objects to intercept exception
signaling even if the source code that signals the exceptions is not available.

The code below shows an example of the interaction IRL/Exception Handling System. The
program starts at method run of class Program. Method print prints in the standard output
the stack of catch objects. For each object, it prints all of its throw methods. This program is
one of the tests used for validating the Green Compiler which is available at
http://www.dc.ufscar.br/~jose/green/green.htm.

/*
ok-sin24.g

Tests if catch objects are removed from the stack of catch objets.
*/

class A subclassOf Exception
end

class C subclassOf Exception

1

end

class B
public:

proc throw(exc : A)
begin
Out.writeln("Catch class B: exception A thrown");
end

proc throw(exc : C)
begin
Out.writeln("Catch class B: exception C thrown");
end

end

class D
public:

proc throw(exc : C)
begin
Out.writeln("Catch class D: exception C thrown");
end

proc throw(exc : A)
begin
Out.writeln("Catch class D: exception A thrown");
end

end

class E
public:

proc throw(exc : C)
begin
Out.writeln("Catch class E: exception C thrown");
end

end

object Program
public:

proc m()(exception : B)
begin
p();
end

proc p()(exception : B)
begin
exception.throw(A.new());
end
// the execution of program starts at method run

proc run()
begin
try(B.new())

2

try(D.new())
end

end
Out.writeln("Outside any try");
print();
Out.writeln("After print");
try(B.new())

try(D.new())
try(E.new())

Out.writeln("Inside triple try");
print();
//m();

end
end

end
end

proc print()
// print prints the stack of catch objects. For each
// catch object, it prints all of its throw methods.
var i : integer;

begin
i = 0;
// get the stack of catch objects

var stack : Stack(Catch) = Runtime.getCatchObjectStack();
var iter : Iter(Catch) = stack.getIter();
while iter.more() do

begin
// get object by object form the stack of catch objects

var aCatch : Catch = iter.next();
Out.write(i);
++i;
// write the name of the class of the catch object aCatch

Out.writeln(aCatch.getClassInfo().getName());
// the for below writes the throw methods of catch object aCatch

var pm : array(ClassMethodInfo)[] = aCatch.getClassInfo().getPublicMethods();
for j : integer = 0 to pm.getSize() - 1 do

if pm[j].getName().compareTo("throw") == 0
then

Out.write(" throw(");
var ci : array(ClassInfo)[] = pm[j].getParameterTypes();
Out.write(ci[0].getName());
Out.writeln(")");

endif
end

end
end

3

