An Idiom for Exception Treatment in C++ and Java

José de Oliveira Guimaraes
Departamento de Computacao - UFSCar
Sao Carlos - SP, Brazil

jose@dc.ufscar.br

August 9, 2002

Abstract

The exception systems of C4++ and Java use catch clauses for exception treat-
ment. These clauses are statically attached to try blocks and cannot be reused. We
propose an idiom that encapsulates catch clauses into methods of special classes
thus giving the benefits of object-oriented programming to exception treatment.
The result is an easy-to-use idiom that allows for code reuse and helps to enforce
consistence among all exception treatments throughout the program.

1 Introduction

Languages C++4 and Java employ similar exception systems. The main difference is that
Java enforces the declaration of checked exceptions a method may throw.! Then we will
use Java in the examples of this articles since its exception system is a bit more complete
than that of C+-+.

Figure 1 shows an example of use of exceptions in Java. Inside a try block there may
be throw commands, as in the example, or method calls that execute throw commands.
Upon the execution of a throw statement, the control is transferred to the appropriate
catch clause following the try block. Then, if statement

throw new InvalidTriExc(a, b, c)
is executed, there will be a jump to clause

catch (InvalidTriExc e)
which acts like a procedure. The object thrown with throw is passed as a parameter
to the catch clause. After executing the catch clause, the program continue with the
statement following the last clause.

Exceptions in Java are objects of classes organized in a hierarchy. For example,
class TriangleExc could be superclass of both InvalidTriExc and NegSideExc. Class
DivisionByZeroExc can be subclass of ArithmeticExc. This exception organization,
proposed by Dony [2], has been transformed into the design pattern Exception [7].

IThat is, if a method may throw an exception, the exception should be declared in the method header:
void read() throws ReadException
An unchecked exception need not to be declared. The class of an unchecked exception 1s always subclass
of Runtime or Error.

try {
if (a < 0) throw new NegSideExc(a);

if (a>b+c)
throw new InvalidTriExc(a, b, c);

t = new Triangle(a, b, c);
t

catch(NegSideExc e) {
// treatment
t

catch(InvalidTriExc e) {
// treatment
t

Figure 1: Exception handling in Java

A catch clause
catch(TriangleExc e) { ... }
can catch exceptions of class TriangleExc and its subclasses. Assuming NegSideExc is
subclass of TriangleExc, the first catch of code

try {

}
catch(TriangleExc e) { ... }
catch(NegSideExc e) { ... }

will catch all exceptions of NegSideExc thrown in the try block. The second catch clause
will never be called. The search for an appropriate catch clause is made in the declaration
order.

The C++/Java mechanism for exception handling has some important characteristics,
detailed below.

e The code for exception treatment, inside the catch clauses, cannot be reused since
each catch clause is attached to a specific try block.

o A catch clause for an exception such as NegSideExc should be written every time
this exception may be thrown. Then the program can have dozens of catch clauses
for NegSideExc, which makes it difficult to enforce a standard treatment for this
exception.

e The exception treatment cannot easily change at runtime since the catch clauses
are statically attached to the try block.

Our idiom, called Exception Treatment, tries to remedy these shortcomings. It is
presented in the next section. Alternatives for the idiom implementation are exposed in
Section 3.

class CatchTri {
public void select(Exception e) {
if (e instanceof NegSideExc)
treat((NegSideExc) e);
else if (e instanceof InvalidTriExc)
treat((InvalidTriExc) e);
else
throw new NonCaughtExc(e) ;
t
public void treat(NegSideExc e)
{ /* treatment */ }
public void treat(InvalidExc e)
{ /* treatment */ }

Figure 2: A catch class for triangle exceptions

2 The Exception Treatment Idiom

We are going to show the idiom? by rewriting the example of Figure 1. The catch clauses
are put in a catch class CatchTri shown in Figure 2. For each clause there is a method
treat with the same parameter and body (the treatment). Method select is responsible
for selecting the appropriate treat method based on its parameter runtime type. The ex-
pression “e instanceof NegSideExc” returns true if e is an object of class NegSideExc
or one of its subclasses. There are two treat methods in the example. Each one is
identified by its parameter type. Then the message send “treat((NegSideExc) e)”, in
which e is cast to type NegSideExc, will call method “treat(NegSideExc e)”.
The try block of Figure 1 should be changed to

aCatchTri = new CatchTri();
try {

// the same as before
t
catch(Exception e) {
aCatchTri.select(e);
t

All try blocks should obey this format when using this idiom. Object aCatchTri should
be an object of a catch class which has a select method. This object is called the
catch object. The responsibility of choosing the exception treatment is changed from the
runtime system (example of Figure 1) to method select made by the programmer.

If method select receives as a parameter an exception object that is not of a
subclass of NegSideExc or InvalidTriExc, it throws exception NonCaughtExc. This
is an unchecked exception — the programmer is not required to catch it. Exception
NonCaughtExc is then thrown when there is a runtime error — an unexpected exception

ZAn idiom is a design pattern specific to a programming language.

is thrown and not caught. In the code of Figure 1, that would result in a compile type
error. Hence our idiom transforms some compile-time errors into runtime ones.

Combination of Exception Treatments

The commands inside a try block may throw exceptions treated by two or more catch
clauses. For example, a try block may throw exceptions NegSideExc and ReadExc. The
former is treated by CatchTri. The last, by class CatchRead. Hence, our scheme, with
just one catch after the try block, will not work. The try block should be expanded to
two blocks, one for each catch class:

try { // outer
try { // inner
// original try block
t
catch(Exception e) { // treats NegSideExc
aCatchTri.select(e);
t
t
catch(Exception e) { // treats ReadExc
aCatchRead.select(e);
t

In class CatchRead of aCatchRead, method select should begin with
if (e instanceof NonCaughtExc)
e = ((NonCaughtExc) e).getException();

Method getException retrieves the exception object stored in the NonCaughtExc object
by a NonCaughtExc constructor. If exception ReadExc is thrown in the inner try block,
it is caught by the inner catch clause and passed to select. This method stores the
exception in a NonCaughtExc object thrown in another exception — see Figure 2. This
exception is caught by the outer catch clause. Method select of object aCatchRead is
called, which retrieves the original exception from the NonCaughtExc object. Then the
appropriate treat method is called by select.

Changing Exception Treatment

There may be more than one treatment for an exception. They can be put in treat
methods of different catch classes. Then the programmer may choose which one to use, a
decision that may be taken even at runtime. In general, treatments for related errors will
be put in a single catch class and its subclasses will provide alternatives for error treatment.
As an example, suppose class CatchTri of Figure 2 is now defined as an abstract class
with concrete method select and abstract methods treat. Subclass CatchTriExtreme
of CatchTri overrides both treat methods in such a way both will print an error message
in the standard output and terminate the program. Subclass CatchTriNice also overrides
the treat method so they do nothing — the error is not considered important. Another
subclass could print an error message in a window and so on. Language Green [4], which
has constructs to support idiom Exception Treatment, offers other possibility: to correct
the error. Then you could ask the user help to correct the value of a Triangle side, for

example. We chose not to add this feature to the Exception Treatment idiom to keep it
simple. But it can be extended to support this functionality.

The catch object to be used in a try block can be supplied by an abstract factory
object. An abstract factory provides an interface for creating families of related objects
[3]. The abstract factory object can have methods getCatchTri and getCatchFile for
returning objects with interfaces equal to CatchTri and CatchFile. They would be used
as in the case

try {

}
catch(Exception e) {
AbstractFactory.factoryObject.getCatchTri() .select(e);

b

AbstractFactory is a class, factoryObject is a static variable of this class, and
getCatchTri returns a catch object.

By changing the object pointed to by factoryObject, we change the exception treat-
ment. If the abstract factory is used in all catch clauses of the program, all exception
treatments are changed.

The Exception Treatment idiom was based on the exception system of the Green
language [4] [5]. In Green, there is no catch clauses. An exception object attached to a
try block is responsible to treat the exceptions the block may throw.

Applicability

The Exception Treatment idiom should be used when there are a lot of identical
treatments for an exception in different places of the code. The treatment can then
be coded in a single place, a treat method of a catch class. That helps the program
maintenance since changes in a single treat method may affect exception treatment in
all the code.

This idiom should also be used when the exception treatment should vary at runtime.
By changing the catch object® at runtime, we change the treat methods that may be
called, changing the exception treatment.

Structure

The structure of a catch class is shown in Figure 3. Method select calls the appro-
priate treat method according to the class of its parameter. A try block should follow
the model below.

aCatchObj = new ConcreteCatch();
try {

}
catch(Exception e) {

3Remember a catch object is an object of a catch clause. In the first example of this section, it is
referred to by variable aCatchTri.

public class ConcreteCatch {
public void select(Exception e) {
if (e instanceof NonCaughtExc)
e = ((NonCaughtExc) e).getException();
// select a treat method based on e class OR
// throw exception NonCaughtExc

b

public void treat(Exceptionl e) { ... }
public void treat(Exception2 e) { ... }
}
Figure 3: The structure of a catch class
aCatchObj.select(e);
}
Consequences

Exception treatment is reused because it is put in methods treat of catch classes.
One may even subclass a catch class and overrides a treat method, changing then part
of the exception treatment.

Using the Java exception handling system, one may use a catch clause for exception
TriangleExc in a hundred places. But it will not be necessary one hundred different
treatments. Probably just two or three different treatments are enough. Then there will
be a lot of redundancy in the catch clauses, making maintenance hard. If one catch clause
needs to be changed, probably all clauses similar to it should be changed too.

Our idiom puts a treatment for one exception in just one place — a method treat.
Changing this method may change the treatment of an exception in dozens of situations.

3 Implementation

Besides being implemented directly by the programmer, method select may also be
implemented using :

1. a software tool that generates it automatically based on user input, probably using

a GUI;
2. an introspective reflection library or;
3. a compile-time metaobject protocol (MOP).

Option 1 is reasonably clear and will not be discussed in this paper. Option 2 demands
all catch classes inherit from a class Catch with a single method, select. This method is

implemented using the Introspective Reflection Library (IRL).* All catch classes should
inherit from Catch and define treat methods. When an object of a catch class receives
a message “select(e)”, method select of Catch is called. It searches and calls a treat
method defined in the class of the object, which is a subclass of Catch. Method select
knows which is the class of its parameter e through method getClass() defined for all
objects. Using the IRL, select searches for a method called “treat” in the current
object, this, and tests if the method found accepts e as parameter. If the treat method
found does, select calls it.

There is a shortcoming in using the IRL for selecting a treat method. The IRL
does not consider the order in which the treat methods are declared. Then if there are
methods

void treat(TriangleExc)

void treat(NegSideExc)
in which TriangleExc is superclass of NegSideExc, method select of Catch always
selects the first method. Even when the exception thrown, parameter e, points to an object
of NegSideExc. In this case, it would be more reasonable to use the second method. It is
legal to choose the first method because it can accept a NegSideExc object as parameter.

Then the use of IRL to select a treat method should not be used when there is a
subtype relationship among parameter types of treat methods.

A compile-time metaobject protocol (MOP) such as that of OpenJava [6] can be used
to generate method select. Class CatchTri would be declared as

public class CatchTri
instantiates SelectException {
// as before
+

Class SelectExceptionis called by the MOP, at compile time, to change class CatchTri.
The only change it will do is to add to CatchTri a method select equal to method select
of class CatchTri of Figure 2. SelectException asks questions to the compiler such as
“which are the treat methods of CatchTri 7”7 and “what is the parameter type of this
treat method 7”. Then SelectException can easily generate a select method for
CatchTri.

4 Conclusion

The Exception Treatment idiom widens the interactions between object-oriented pro-
gramming and error treatment: catch clauses are encapsulated in methods of catch classes,
catch classes may be inherited by other catch classes, exception treatment may be changed
at runtime by using other catch objects, and a design pattern, abstract factory, may be
employed to select a catch object.

The idiom foster code reuse because an exception treatment is written just once and
put in a treat method. This also keeps the program maintenance simple: to change

4The IRL of Java is called Java Core Reflection. With it, one can know the class of an object at
runtime, the methods of this class, the parameter types of each method, and so on. We can even call a
method selected dynamically by a search made using the method name.

certain error treatment, one need to change just one treat method. If the idiom is not
used, all catch’s that treat that error should be found and changed.

The idiom has its drawbacks. It demands the creation of a catch object for each block,
although one may use a static class variable thus saving an object creation. The idiom
requires a select method which may be prone to error. It causes a runtime error when an
exception thrown inside a try block is not expected by the select method of the catch
object. This error would be pointed at compile time if the Java exception system were
used. Then the idiom causes runtime errors in situations in which Java would point the
problem at compile time. But the error is always signalled.

Idioms and patterns are only useful when they can be applied to a variety of contexts by
different programmers. The Exception Treatment idiom lacks this practical test. Then
we would thank reports of people that have used it, so we could add the conclusions
taken from practice to a future article. In particular, some questions are important: is
that common to throw exception NonCaughtExc® ? Is it really useful to subclass catch
classes 7 How deep are the catch-class hierarchies 7 When using the idiom, is the number
of treat methods much smaller then the number of catch clauses when not using it 7 Is
the select method prone to error and difficult to maintain 7 Does the select method
implemented using the Introspective Reflection Library work well 7 It does not if there
is a subtype relationship among parameter types of treat methods.

References

[1] Coplin, J.O.; Schmidt, D.C., eds. Pattern Languages of Program Design 1, Addison-
Wesley, 1995.

[2] Dony, C. An Object-Oriented Exception Handling System for an Object-Oriented
Language. Lecture Notes in Computer Science, Vol. 322, FCOOP §8.

[3] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John. Design Patterns: FEl-
ements of Reusable Object-Oriented Software. Professional Computing Series, Addison-
Wesley, Reading, MA, 1994.

[4] Guimarares, José de Oliveira. The Green Language. Available at
http://www.dc.ufscar.br/~jose/green/green.htm.

[5] Guimaraes, José de Oliveira. The Green Language Exception System. Available at
http://www.dc.ufscar.br/~jose/green/green.htm.

[6] Tatsubori, M. An Extension Mechanism for the Java Language. Master Thesis, Uni-
versity of Tsukuba, 1999.

[7] Wolf, Kirk and Liu, Chamond. New Clients with Old Servers: A Pattern Language

for Client/Server Frameworks. In [1].

>That would indicate an exception was not caught by the catch object.

