
An Idiom for Exception Treatment in C�� and Java

Jos�e de Oliveira Guimar�aes

Departamento de Computa�c�ao � UFSCar

S�ao Carlos � SP� Brazil

jose�dc�ufscar�br

August �� 	

	

Abstract

The exception systems of C�� and Java use catch clauses for exception treat�

ment� These clauses are statically attached to try blocks and cannot be reused� We

propose an idiom that encapsulates catch clauses into methods of special classes

thus giving the bene�ts of object�oriented programming to exception treatment�

The result is an easy�to�use idiom that allows for code reuse and helps to enforce

consistence among all exception treatments throughout the program�

� Introduction

Languages C�� and Java employ similar exception systems� The main di�erence is that
Java enforces the declaration of checked exceptions a method may throw�� Then we will
use Java in the examples of this articles since its exception system is a bit more complete
than that of C���

Figure � shows an example of use of exceptions in Java� Inside a try block there may
be throw commands� as in the example� or method calls that execute throw commands�
Upon the execution of a throw statement� the control is transferred to the appropriate
catch clause following the try block� Then� if statement

throw new InvalidTriExc�a� b� c�

is executed� there will be a jump to clause
catch � InvalidTriExc e �

which acts like a procedure� The object thrown with throw is passed as a parameter
to the catch clause� After executing the catch clause� the program continue with the
statement following the last clause�

Exceptions in Java are objects of classes organized in a hierarchy� For example�
class TriangleExc could be superclass of both InvalidTriExc and NegSideExc� Class
DivisionByZeroExc can be subclass of ArithmeticExc� This exception organization�
proposed by Dony ���� has been transformed into the design pattern Exception �	��

�That is� if a method may throw an exception� the exception should be declared in the method header�

void read�� throws ReadException ���

An unchecked exception need not to be declared� The class of an unchecked exception is always subclass

of Runtime or Error�

�



���

try �

if � a � � � throw new NegSideExc�a��

���

if � a 	
 b � c �

throw new InvalidTriExc�a� b� c��

���

t 
 new Triangle�a� b� c��

�

catch� NegSideExc e � �



 treatment

�

catch� InvalidTriExc e � �



 treatment

�

Figure �
 Exception handling in Java

A catch clause
catch� TriangleExc e � � ��� �

can catch exceptions of class TriangleExc and its subclasses� Assuming NegSideExc is
subclass of TriangleExc� the �rst catch of code

try �

���

�

catch� TriangleExc e � � ��� �

catch� NegSideExc e � � ��� �

will catch all exceptions of NegSideExc thrown in the try block� The second catch clause
will never be called� The search for an appropriate catch clause is made in the declaration
order�

The C���Java mechanism for exception handling has some important characteristics�
detailed below�

� The code for exception treatment� inside the catch clauses� cannot be reused since
each catch clause is attached to a speci�c try block�

� A catch clause for an exception such as NegSideExc should be written every time
this exception may be thrown� Then the program can have dozens of catch clauses
for NegSideExc� which makes it di
cult to enforce a standard treatment for this
exception�

� The exception treatment cannot easily change at runtime since the catch clauses
are statically attached to the try block�

Our idiom� called Exception Treatment� tries to remedy these shortcomings� It is
presented in the next section� Alternatives for the idiom implementation are exposed in
Section ��



class CatchTri �

public void select� Exception e � �

if � e instanceof NegSideExc �

treat� �NegSideExc � e ��

else if � e instanceof InvalidTriExc �

treat� �InvalidTriExc � e ��

else

throw new NonCaughtExc�e��

�

public void treat� NegSideExc e �

� 
� treatment �
 �

public void treat� InvalidExc e �

� 
� treatment �
 �

�

Figure �
 A catch class for triangle exceptions

� The Exception Treatment Idiom

We are going to show the idiom� by rewriting the example of Figure �� The catch clauses
are put in a catch class CatchTri shown in Figure �� For each clause there is a method
treat with the same parameter and body �the treatment�� Method select is responsible
for selecting the appropriate treatmethod based on its parameter runtime type� The ex�
pression �e instanceof NegSideExc� returns true if e is an object of class NegSideExc
or one of its subclasses� There are two treat methods in the example� Each one is
identi�ed by its parameter type� Then the message send �treat� �NegSideExc� e��� in
which e is cast to type NegSideExc� will call method �treat� NegSideExc e���

The try block of Figure � should be changed to

aCatchTri 
 new CatchTri���

try �

���



 the same as before

�

catch� Exception e � �

aCatchTri�select�e��

�

All try blocks should obey this format when using this idiom� Object aCatchTri should
be an object of a catch class which has a select method� This object is called the
catch object� The responsibility of choosing the exception treatment is changed from the
runtime system �example of Figure �� to method select made by the programmer�

If method select receives as a parameter an exception object that is not of a
subclass of NegSideExc or InvalidTriExc� it throws exception NonCaughtExc� This
is an unchecked exception � the programmer is not required to catch it� Exception
NonCaughtExc is then thrown when there is a runtime error � an unexpected exception

�An idiom is a design pattern speci�c to a programming language�



is thrown and not caught� In the code of Figure �� that would result in a compile type
error� Hence our idiom transforms some compile�time errors into runtime ones�

Combination of Exception Treatments

The commands inside a try block may throw exceptions treated by two or more catch
clauses� For example� a try block may throw exceptions NegSideExc and ReadExc� The
former is treated by CatchTri� The last� by class CatchRead� Hence� our scheme� with
just one catch after the try block� will not work� The try block should be expanded to
two blocks� one for each catch class


try � 

 outer

try � 

 inner



 original try block

�

catch� Exception e � � 

 treats NegSideExc

aCatchTri�select�e��

�

�

catch� Exception e � � 

 treats ReadExc

aCatchRead�select�e��

�

In class CatchRead of aCatchRead� method select should begin with
if � e instanceof NonCaughtExc �

e 
 ��NonCaughtExc � e��getException���

Method getException retrieves the exception object stored in the NonCaughtExc object
by a NonCaughtExc constructor� If exception ReadExc is thrown in the inner try block�
it is caught by the inner catch clause and passed to select� This method stores the
exception in a NonCaughtExc object thrown in another exception � see Figure �� This
exception is caught by the outer catch clause� Method select of object aCatchRead is
called� which retrieves the original exception from the NonCaughtExc object� Then the
appropriate treat method is called by select�

Changing Exception Treatment

There may be more than one treatment for an exception� They can be put in treat

methods of di�erent catch classes� Then the programmer may choose which one to use� a
decision that may be taken even at runtime� In general� treatments for related errors will
be put in a single catch class and its subclasses will provide alternatives for error treatment�
As an example� suppose class CatchTri of Figure � is now de�ned as an abstract class
with concrete method select and abstract methods treat� Subclass CatchTriExtreme
of CatchTri overrides both treatmethods in such a way both will print an error message
in the standard output and terminate the program� Subclass CatchTriNice also overrides
the treat method so they do nothing � the error is not considered important� Another
subclass could print an error message in a window and so on� Language Green ���� which
has constructs to support idiom Exception Treatment� o�ers other possibility
 to correct
the error� Then you could ask the user help to correct the value of a Triangle side� for



example� We chose not to add this feature to the Exception Treatment idiom to keep it
simple� But it can be extended to support this functionality�

The catch object to be used in a try block can be supplied by an abstract factory
object� An abstract factory provides an interface for creating families of related objects
���� The abstract factory object can have methods getCatchTri and getCatchFile for
returning objects with interfaces equal to CatchTri and CatchFile� They would be used
as in the case

try �

���

�

catch� Exception e � �

AbstractFactory�factoryObject�getCatchTri���select�e��

�

AbstractFactory is a class� factoryObject is a static variable of this class� and
getCatchTri returns a catch object�

By changing the object pointed to by factoryObject� we change the exception treat�
ment� If the abstract factory is used in all catch clauses of the program� all exception
treatments are changed�

The Exception Treatment idiom was based on the exception system of the Green
language ��� ���� In Green� there is no catch clauses� An exception object attached to a
try block is responsible to treat the exceptions the block may throw�

Applicability

The Exception Treatment idiom should be used when there are a lot of identical
treatments for an exception in di�erent places of the code� The treatment can then
be coded in a single place� a treat method of a catch class� That helps the program
maintenance since changes in a single treat method may a�ect exception treatment in
all the code�

This idiom should also be used when the exception treatment should vary at runtime�
By changing the catch object� at runtime� we change the treat methods that may be
called� changing the exception treatment�

Structure

The structure of a catch class is shown in Figure �� Method select calls the appro�
priate treat method according to the class of its parameter� A try block should follow
the model below�

aCatchObj 
 new ConcreteCatch���

try �

���

�

catch� Exception e � �

�Remember a catch object is an object of a catch clause� In the �rst example of this section� it is

referred to by variable aCatchTri�



public class ConcreteCatch �

public void select� Exception e � �

if � e instanceof NonCaughtExc �

e 
 � �NonCaughtExc � e��getException���



 select a treat method based on e class OR



 throw exception NonCaughtExc

���

�

public void treat� Exception� e � � ��� �

public void treat� Exception� e � � ��� �

�

Figure �
 The structure of a catch class

aCatchObj�select�e��

�

Consequences

Exception treatment is reused because it is put in methods treat of catch classes�
One may even subclass a catch class and overrides a treat method� changing then part
of the exception treatment�

Using the Java exception handling system� one may use a catch clause for exception
TriangleExc in a hundred places� But it will not be necessary one hundred di�erent
treatments� Probably just two or three di�erent treatments are enough� Then there will
be a lot of redundancy in the catch clauses� making maintenance hard� If one catch clause
needs to be changed� probably all clauses similar to it should be changed too�

Our idiom puts a treatment for one exception in just one place � a method treat�
Changing this method may change the treatment of an exception in dozens of situations�

� Implementation

Besides being implemented directly by the programmer� method select may also be
implemented using 


�� a software tool that generates it automatically based on user input� probably using
a GUI�

�� an introspective re�ection library or�

�� a compile�time metaobject protocol �MOP��

Option � is reasonably clear and will not be discussed in this paper� Option � demands
all catch classes inherit from a class Catch with a single method� select� This method is



implemented using the Introspective Re�ection Library �IRL��� All catch classes should
inherit from Catch and de�ne treat methods� When an object of a catch class receives
a message �select�e��� method select of Catch is called� It searches and calls a treat
method de�ned in the class of the object� which is a subclass of Catch� Method select

knows which is the class of its parameter e through method getClass�� de�ned for all
objects� Using the IRL� select searches for a method called �treat� in the current
object� this� and tests if the method found accepts e as parameter� If the treat method
found does� select calls it�

There is a shortcoming in using the IRL for selecting a treat method� The IRL
does not consider the order in which the treat methods are declared� Then if there are
methods

void treat� TriangleExc �

void treat� NegSideExc �

in which TriangleExc is superclass of NegSideExc� method select of Catch always
selects the �rst method� Even when the exception thrown� parameter e� points to an object
of NegSideExc� In this case� it would be more reasonable to use the second method� It is
legal to choose the �rst method because it can accept a NegSideExc object as parameter�

Then the use of IRL to select a treat method should not be used when there is a
subtype relationship among parameter types of treat methods�

A compile�time metaobject protocol �MOP� such as that of OpenJava ��� can be used
to generate method select� Class CatchTri would be declared as

public class CatchTri

instantiates SelectException �



 as before

�

Class SelectException is called by the MOP� at compile time� to change class CatchTri�
The only change it will do is to add to CatchTri a method select equal to method select
of class CatchTri of Figure �� SelectException asks questions to the compiler such as
�which are the treat methods of CatchTri �� and �what is the parameter type of this
treat method ��� Then SelectException can easily generate a select method for
CatchTri�

� Conclusion

The Exception Treatment idiom widens the interactions between object�oriented pro�
gramming and error treatment
 catch clauses are encapsulated in methods of catch classes�
catch classes may be inherited by other catch classes� exception treatment may be changed
at runtime by using other catch objects� and a design pattern� abstract factory� may be
employed to select a catch object�

The idiom foster code reuse because an exception treatment is written just once and
put in a treat method� This also keeps the program maintenance simple
 to change

�The IRL of Java is called Java Core Re�ection� With it� one can know the class of an object at

runtime� the methods of this class� the parameter types of each method� and so on� We can even call a

method selected dynamically by a search made using the method name�



certain error treatment� one need to change just one treat method� If the idiom is not
used� all catch�s that treat that error should be found and changed�

The idiom has its drawbacks� It demands the creation of a catch object for each block�
although one may use a static class variable thus saving an object creation� The idiom
requires a selectmethod which may be prone to error� It causes a runtime error when an
exception thrown inside a try block is not expected by the select method of the catch
object� This error would be pointed at compile time if the Java exception system were
used� Then the idiom causes runtime errors in situations in which Java would point the
problem at compile time� But the error is always signalled�

Idioms and patterns are only useful when they can be applied to a variety of contexts by
di�erent programmers� The Exception Treatment idiom lacks this practical test� Then
we would thank reports of people that have used it� so we could add the conclusions
taken from practice to a future article� In particular� some questions are important
 is
that common to throw exception NonCaughtExc� � Is it really useful to subclass catch
classes � How deep are the catch�class hierarchies � When using the idiom� is the number
of treat methods much smaller then the number of catch clauses when not using it � Is
the select method prone to error and di
cult to maintain � Does the select method
implemented using the Introspective Re�ection Library work well � It does not if there
is a subtype relationship among parameter types of treat methods�

References

��� Coplin� J�O�� Schmidt� D�C�� eds� Pattern Languages of Program Design �� Addison�
Wesley� �����

��� Dony� C� An Object�Oriented Exception Handling System for an Object�Oriented
Language� Lecture Notes in Computer Science� Vol� ���� ECOOP ���

��� Gamma� Erich� Helm� Richard� Johnson� Ralph� Vlissides� John� Design Patterns� El�

ements of Reusable Object�Oriented Software� Professional Computing Series� Addison�
Wesley� Reading� MA� �����

��� Guimar�ares� Jos�e de Oliveira� The Green Language� Available at
http
��www�dc�ufscar�br��jose�green�green�htm�

��� Guimar�aes� Jos�e de Oliveira� The Green Language Exception System� Available at
http
��www�dc�ufscar�br��jose�green�green�htm�

��� Tatsubori� M� An Extension Mechanism for the Java Language� Master Thesis� Uni�
versity of Tsukuba� �����

�	� Wolf� Kirk and Liu� Chamond� New Clients with Old Servers
 A Pattern Language
for Client�Server Frameworks� In ����

�That would indicate an exception was not caught by the catch object�


