
Learning Compiler Construction by Examples
José de Oliveira Guimarães

Departamento de Computação – UFSCar
São Carlos – SP, 13565-905

Brazil
email: jose@dc.ufscar.br

Abstract: In traditional compiler construction courses, each
compiler phase is studied in detail before moving on to the
next one. This not only places a great distance between
theory and practice but also makes the students lose the big
picture of the subject. We have been employing a different
course format in which the subject is incrementally
introduced through ten compilers of increasingly
complexity. The first compiler is in fact just a syntax
analyzer of a very simple language. The last one is a
complete compiler of a Pascal-like language. Students of
this course learn how to build compilers faster than the
usual.

Keywords: compiler construction, learning by examples,
object-oriented programming.

D.3.4 [Programming Languages]: Processors - Code
generation, Compilers, Parsing

1. Introduction

Students usually consider difficult courses on
compiler construction. The reasons are that compiler
construction demands a heavy dose of programming and
theory. A compiler operates in phases, each one with its
particularities, algorithms, techniques, and tricks of the
trade. The phases are lexical analysis, syntax analysis
(parsing), semantic analysis, code generation, and code
optimization [5]. The last phase is not usually studied in the
undergraduate courses of our university.
 A compiler takes a program writ ten in a source
language S and produces as output another program in a
target language. The lexical analyzer takes characters of the
input, in language S, and groups them in what we call
tokens. Each language terminal is a token, which is
associated to an integer constant. The syntax analyzer
(parser) takes the tokens as input and checks if the source
program matches the S grammar. The parser may build an
abstract syntax tree (AST) of the source program. An AST
is a data structure representing all the main elements of the
input. It has all the important information present in the
source program. The source program may have errors not
detected by the parser such as "variable not declared" and
"left and right-hand sides of the assignment have
incompatible types". The semantic analysis is responsible
for this kind of checking. In general, the semantic analyzer
is composed by a myriad of pieces of code spread in the

parser. The code optimizer changes the AST or some
intermediary program representation produced by the
parser in order to make the output program faster or
smaller. The code generator is responsible for generating
code in the target language.
 Traditional compiler construction courses present
most or even all aspects of every compilation phase before
moving on to the next one. As a consequence, students feel
lost in details , losing the big compiler picture. Only at the
middle or at the end of the course that a complete compiler
emerges ? sometimes a complete compiler is never
presented. Students usually ask the question "why am I
learning this?". Since they do not know the whole, they do
not understand why the parts are necessary.
 This article presents the details of a different
compiler construction course which has been taught every
year since 2002 at the Computer Science Department of the
Federal University of São Carlos, Brazil. The subject is
introduced through examples of increasing complexity,
starting with a very simple expression grammar and
finishing with a complete compiler of a language similar to
Pascal. The next section explains how these examples are
presented to the students . The last section concludes.

2. The Course Outline

The compiler construction course is taught in one
semester with sixteen weeks, three of which are reserved
for examinations. There are four consecutive 50-minutes
classes a week. Most of the students are in the fifth
(Computer Science) or seventh (Computing Engineering)
semester of their courses. Now that we described the
context, the course outline can be presented.
 The course is divided in two parts , each one eight-
weeks long. The first one is very practical. We teach how
to build compilers without worrying in proving why the
techniques presented work. In the second part, we teach the
theory behind compiler construction. This inversion is
made on purpose. The objective is to introduce the subject
as fast as possible to enable students to build a simple
compiler in the first month. Students do not miss the theory
since it is intuitively clear that the parsing method used,
recursive descendent parsing, works.
 The first cours e part uses ten compilers made
using recursive descendent analysis and five compilers
made using CUP/Jlex [1] [8]. The first ten compilers were
made in Java without the help of any tool. All of the

compilers [6] and a manual [7] explaining them are
available to the students . In the first day of the course, in
four 50-minutes classes, the following topics are seen:

? the definition of a compiler;
? the compiler cousins: where compiler techniques

may be employed;
? the phases of a compiler (lexical analysis, syntax

analysis, semantic analysis, and code generation
and optimization).

 In the second course day, the first five compilers
are introduced. In these compilers, lexical analysis is very
simple, trivial. We concentrate in the more interesting
parsing and code generation phases. A lexical analyzer can
be made without any sophisticated technique and we chose
to show more complex lexical analyzers later on. Code
generation is rapidly presented to catch the imagination of
the students ? it seems something magical to
automatically transform one language into another. None of
the first five compilers needs a symbol table ? there is no
semantic analysis. But the abstract syntax tree is built for
the 5th compiler. Compilers 6 to 10 are seen one a day,
approximately. All compilers were made in Java.
 The ten compilers made using the recursive
descendent parsing method are presented in the following
paragraphs. The important topics introduced with each of
them are discussed.

Compilers 1 through 5 use the same language
whose grammar is

 Expr ::= '(' Oper Expr Expr ')'
 | Number
 Oper ::= '+' | '-'
 Number ::= '0' | '1' | ... | '9'

Legal "programs" in this language are expressions like
 1
 (+ 1 2)
 (- (+ 5 2) 4)
Using this grammar we teach how to make a lexical and a
syntax analyzer in Java. The lexical analyzer is very
simple: it skips white spaces and returns the next character
? note that all terminals are one-character tokens.
 The parser is not difficult either. It is composed by
methods of class Compiler, which also contains one
method (nextToken) for lexical analysis. Class
Compiler contains one method for each grammar rule ?
expr, oper, and number. Each parser method is
responsible for analyzing the corres ponding grammar rule
and returns nothing (void). Some examples with even
simpler grammars are shown and the subject is not difficult
to be understood by the students. Compiler 1 does not
generate code ? it is in fact just a parser.

 There is a method error() which is called
whenever a lexical or parser error is found. This method
prints a message and terminates the program. Note the
whole compiler is in class Compiler.

Compiler 2 generates code using the simplest
possible way: by adding print (System.out.println)
statements to the parser code. The target language is C,
which means code generation is very simple. For example,
“(+ 1 2)” produces “(1 + 2)”.

Compiler 3 generates assembly code. A stack-
based virtual machine is used. This compiler is not too
different from the previous one. It shows that non-
optimized code generation to assembly is generally easy to
do.

Compiler 4 evaluates the value of the expression
at compile time. It shows the very basic techniques of
interpreters ? to evaluate an expression is to interpret it.
Each parser method (expr and number) but oper
returns the value of the expression analyzed by the
corresponding rule.

Compiler 5 builds the AST (abstract syntax tree)
for the input expression. The AST is a set of objects
representing the input. These objects are instances of AST
classes CompositeExpr and NumberExpr. Class
CompositeExpr represents an expression with an
operator, like “(+ 1 2)”. Class NumberExpr represents
a number. These classes inherit from abstract class Expr
which has an abstract genC method. Methods expr and
number of class Compiler return objects of the AST
corresponding to the expression they analyze:
 Expr expr() { ... }
 NumberExpr number() { ... }
The course material [7] explains the two reasons
CompositeExpr and NumberExpr must inherit from
Expr:

? method expr of the parser returns either a
CompositeExpr or a NumberExpr object. If
the rule Expr ::= ‘(‘ Oper Expr Expr
‘)’ is chosen, instead of Expr ::= Number,
method expr returns a CompositeExpr object.
Otherwise it returns an object of NumberExpr.
Therefore the return type of expr must be a
common superclass of CompositeExpr and
NumberExpr. We created Expr for that;

? class CompositeExpr has three instance
variables:
 char oper;
 Expr left, right;
left and right are pointers to the left and right
expressions of a composite expression. Both left

and right must be able to point either to a
CompositeExpr or to a NumberExpr object.
Then their types should be Expr, a common
superclass.

 Code generation is removed from methods expr
and number of class Compiler and placed in genC
methods of the AST. There is an abstract method genC in
Expr and concrete genC methods in CompositeExpr
and NumberExpr. The top-level parser method is method
compile of class Compiler. It returns an object of type
Expr whose real class at runtime is one of the Expr
subclasses. By sending the genC message to this object, a
method of CompositeExpr or NumberExpr is called.
This illustrates polymorphism in Java.
 During the course, we try to teach as much object-
oriented programming as possible. And there is plenty of
opportunities for that in the design of the AST classes. All
the important aspects of object-oriented programming are
explored: classes, inheritance, and polymorphism.

Compiler 6 uses a language that supports the
declaration of variables. A typical program would be
 a = 1 b = 7 : (+ a b)
This language demands some semantic analysis, since a
variable may be declared twice and a non-declared variable
may be used in the expression following the colon.
However, we do not introduce semantic analysis in this
compiler, which is only useful for showing new AST
classes (Program, Variable, VariableExpr) and a
more complete code generation to C ? now the output can
be compiled by a C compiler and executed. The previous
compilers generate just the expression in C, without the
main function.
 Again, there are new opportunities to teach object-
oriented programming here. The declaration of a variable,1
“b = 7”, is represented by an object of class Variable.
Method genC of this class generates “int b = 7;” for
the statement “b = 7”. When a variable appears in an
expression, we should not use class Variable of the AST
to represent it. Code generation for variable b when it
appears in the expression “(+ a b)” is different from the
code generation for the declaration of b. Therefore variable
b in an expression should be represented by another class,
which is VariableExpr. The grammar of language 62
defines the following rule:

 Expr ::= ‘(‘ Oper Expr Expr ‘)’
 | Number
 | Variable

1 Variables are in fact constants, since their values cannot
be changed.
2 Source language of compiler 6.

Method expr of the parser returns a VariableExpr
object when the last option is chosen (corresponding to
Expr ::= Variable). That means VariableExpr
should inherit from Expr.

Compiler 7 uses the same grammar as language 6.
It evaluates the expression through methods eval added to
several AST classes. Each AST class represents part of an
expression and the eval method of that class returns the
value of that part.
 A hash table plays the role of a symbol table and
is used to keep the values of the variables. At the
declaration of a variable, the pair (name, value) is inserted
at the table. When a variable is found in the expression, its
value is retrieved from the hash table. The compiler checks
if a variable is being declared twice and if it is declared
before used.
 This compiler is another nice introduction to
interpretation (the other is compiler 4). Instead of
generating code to a virtual machine and interpreting it, this
compiler interprets the AST directly, an easy way of
building an interpreter.

Compiler 8 introduces new grammar rules with
long terminals like if, then, and begin ? all previous
terminals had just one character. There are numbers with
more than one digit and comments from // till the end of
the line. The language supports declaration of variables,
if, read, and write statements. There are great
changes in the lexical analyzer which now uses integers to
represent terminals (previous lexical analyzers used the
one-character terminals themselves). There are new AST
classes : AssignmentStatement, IfStatement,
ReadStatement, and WriteStatement. All of them
are subclasses of the abstract class Statement, which
declares an abstract genC method.

Compiler 9 introduces several novelties related to
object-oriented programming. A class Lexer is created for
lexical analysis ? method nextToken is moved to it. A
class CompilerError is created just for error signaling.
Class Compiler has the parsing methods. There are just one
object of each of classes Compiler, Lexer, and
CompilerError. Each one references the other two.
Variables have types. There are types integer,
boolean, and char. Each type is represented by a class
of the AST and all type classes inherit from abstract class
Type. At runtime, only one object of each of the type
classes is created ? there is no need to create more than
one. All objects representing, for example, type char
would be equal to each other. Types introduce a lot of
semantic checking: the if expression must have type
boolean, the left and right-hand side of an assignment
must have the same type, and so on.

Compiler 10 uses a grammar with several new

rules. The language resembles Pascal and supports
procedures, functions, and loop statements. The symbol
table needs to be improved since there are global
subroutines and local variables and parameters ? it is
necessary to use two hash tables, one for each scope. We
could have used a more efficient hash table but we did not
because this would be a distraction from the main goals of
the course.

In this compiler there are new opportunities for
semantic analysis and code generation. For example, when
a procedure is called the compiler should check the number
and types of the arguments. Code generation is not difficult
because procedure and function declarations are translated
to function declarations in C ? the difficulties of the
subject are masked by the target language.

 The abstract syntax trees used in compilers 8-10
are not too abstract. We chose to add to them more
information than they usually have. All identifiers are
represented in the AST classes by pointers to objects. For
example, a statement “b = 1” is represented by an object
of the AST class AssignmentStatement. This class
has an instance variable of type Variable. An object of
this class references the object of class Variable that
represents “b”. Usually “b” would be represented by string
“b”. This way of building the AST adds more object-
oriented programming to the compiler construction.
 After studying the ten compilers made using the
method of recursive descendent parsing, we present five
compilers made using CUP/JLex [1, 5]. These tools are the
equivalent to YACC/Lex for Java. CUP is a parser
generator and JLex creates a lexical analyzer from a
description of the terminals. These five compilers are the
equivalent of the first five compilers made by hand using
recursive descendent parsing.
 The second part of the course deals with theory of
compiler construction. The students learn why the recursive
descendent parsing method works. It is interesting to note
that, while studying the first ten compilers, the students
have the intuition that the method works. They ask
questions like “what if we had a rule A ::= B | C and both B
and C start with the same terminal?”. These questions show
a correct intuitive understanding of the method.

3. Conclusion

 In the course described in this paper, the concepts
and techniques of compiler construction are introduced
incrementally through a series of ten compilers. The
incremental and smooth additions of features to each
language make it relatively easy to learn the subject. The
most attractive parts, parsing and code generation, are
introduced in the very first compilers, motivating the

students. In the course material, at the end of each compiler
description there are exercises relative to the new
techniques presented in that compiler. In the classes,
exercises are given after every new topic to involve
students with the subject.
 In our course, students learn how to build a
complete compiler in the second course day. They get the
big picture of the subject immediately. All of the material
that follows brings only refinements (although important)
to the compilers taught in this day. Ghuloum [4] proposes a
similar teaching method using Scheme, although his
compilers are much more sophisticated than we thought
could be taught in an undergraduate course. It is interesting
to note that the critics he makes on traditional courses are
virtually the same as ours.
 By presenting the theory after and not before, we
create suspense on the reasons that make the recursive
descendent parsing method works. The compilers are a
motivation to study the theory. It is worth remembering
that it is in compiler construction that theory and practice
meet each other. Without theory, there would be no
systematic technique for compiler construction.
 Several articles discuss compiler construction
courses [2], [3], [8], [10]. However, these articles focus on
the student assignments, the compilers the students should
implement. It can be a compiler for a) a small ad-hoc
language, b) a subset of a known language, c) an object-
oriented, functional, or logic language, d) a real language in
which the Professor supplies part of the code (a “fill in the
blanks” approach). Or the assignments can be a mixture of
the above. In this article we stress another topic, the
teaching of compiler construction itself. By presenting
practice before theory we get the students interested in the
subject. By presenting the compiler techniques in small
steps we keep them interested because the increments from
one compiler to the next are not that difficult to follow.
 This course is followed in the subsequent semester
by a compiler laboratory course. In it, students build a
complete compiler for a small object-oriented language.
This language is a subset of Java called Krakatoa (a very
significant name indeed). In fact, Krakatoa can be
considered the smallest Java subset that is object-oriented.
It has everything necessary to be considered object-oriented
and nothing more.
 Code generation is made to C with all the
complexities brought by inheritance, polymorphism, and
message sends to variables, this , and super. Although we
present a paper that describes how to generate code, this is
not a trivial task to the students.
 Since this laboratory compiler course has no
expositive classes, the Krakatoa compiler is made only with
the practical experience and theoretical basis students
acquired in the first course, the one described in this paper.
This is, in our opinion , the greater evidence of the success
of this “incremental” course method.

 All the course material is available on the Internet
[6].

Bibliography

[1] Ananian, C. JLex: A lexical analyzer generator for
Java.
http://www.cs.princeton.edu/~appel/modern/java/JLex,
2003.
[2] Baldwin, D. A compiler for teaching about compilers.
In Proceedings of the 34th SIGCSE technical symposium
on Computer science education. (Reno, Ne vada, Feb. 19-
23, 2003), 220-223.
[3] Coon, L. A sequence of lab exercises for an
introductory compiler construction course. SIGCSE
Bulletin 28, 3 (Sep. 1996), 60-64.
[4] Ghuloum, Abdulaziz. An incremental approach to
compiler construction. In Proceedings of the 2006 Scheme
and Functional Programming Workshop, Portland, OR,
2006.
[5] Grune, D., Bal, H., Jacobs, J.H. and Langendoen, K.
Modern Compiler Design. John Wiley & Sons, 2000.
[6] Guimarães, José de O. Compilers used in the course.
Available at http://www.dc.ufscar.br/~jose/courses/cc-
en.htm.
[7] Guimarães, José de O. Learning Compiler Construction
by Examples. Course material. Available at
http://www.dc.ufscar.br/~jose/courses/cc-en.htm.
[8] Hudson, S. CUP parser generator for Java.
http://www.cs.princeton.edu/~appel/modern/java/CUP.
[9] Neff, N. OO Design in compiling an OO language. In
Proceedings of the thirtieth SIGCSE technical symposium
on Computer science education. (New Orleans, Louisiana,
Mar. 24-28, 1999), 326-330.
[10] Tempte, M. A compiler construction project for an
object-oriented language. In Proceedings of the twenty-
third SIGCSE technical symposium on Computer science
education. (Kansas City, Missouri, Mar. 5-6, 1992), 138-
141.

