Learning Compiler Construction by Examples

José de Oliveira Guimaraes
Departamento de Computacdo— UFSCar
Sao Carlos— SP, 13565-905

Brazil

email: jose@dc.ufscar.br

Abstract: In traditional compiler construdion courses, each
compiler phaseis studied in detail before moving on to the
next one. This not only places agreat distance between
theory and practice but al so makes the students lose the big
picture of the subject. We have been employing adifferent
course format in which the subject isincrementally
introduced throughten compilers of increasingly
complexity. Thefirst compiler isin fact just a syntax
analyzer of avery simplelanguage. Thelastoneisa
complete compiler of a Pascal-like language. Students of
this course learn how to build compilers faster than the
usual.

Keywords: compiler construction, learning by examples,
object-oriented programming.

D.3.4 [Programming Languages]: Processors- Code
generation, Compilers, Parsing

1. Introduction

Students usually consider difficult courses on
compiler construction. The reasons are that compiler
construction demands a heavy dose of programming and
theory. A compiler operates in phases, each one with its
particularities, algorithms, techniques, and tricks of the
trade. The phases are lexical analysis, syntax analysis
(parsing), semantic analysis, code generation, and code
optimization [5]. The last phaseis not usualy studiedin the
undergraduate courses of our university.

A compiler takes a program written in a source
language S and produces as output another programina
target language. Thelexical analyzer takes characters of the
input, in language S, and groups them in what we call
tokens. Each language terminal is atoken, which is
associated to an integer constant. The syntax analyzer
(parser) takes the tokens as input and checksiif the source
program matches the S grammar. The parser may build an
abstract syntax tree (AST) of the source program. An AST
is a data structure representing all the main elements of the
input. It has all theimportant information present in the
source program. The source program may have errors not
detected by the parser such as "variable not declared” and
"left and right-hand sides of the assignment have
incompatible types'. The semantic analysisis responsible
for thiskind of checking. In general, the semantic analyzer
iscomposed by amyriad of pieces of code spread in the

parser. The code optimizer changesthe AST or some
intermediary program representation produced by the
parser in order to make the output program faster or
smaller. The code generator is responsible for generating
codein the target language.

Traditional compiler construction courses present
most or even all aspects of every compilation phase before
moving on to the next one. Asa consequence, students fedl
lost in details, losing the big compiler picture. Only at the
middle or at the end of the course that a complete compiler
emerges ? sometimes acomplete compiler isnever
presented. Studentsusually ask the question "why am |
learning this?'. Since they do not know the whole, they do
not understand why the parts are necessary.

This article presents the details of a different
compiler construction course which has been taught every
year since 2002 at the Computer Science Department of the
Federal University of S8o Carlos, Brazil. The subject is
introduced through examples of increasing complexity,
starting with avery simple expression grammar and
finishing with a complete compiler of alanguage similar to
Pascal. The next section explains how these examples are
presented to the students. Thelast section concludes.

2. The Course Outline

The compiler construction course is taught in one
semester with sixteen weeks, three of which are reserved
for examinations. There are four consecutive 50-minutes
classes aweek. Most of the students are in the fifth
(Computer Science) or seventh (Computing Engineering)
semester of their courses. Now that we described the
context, the course outline can be presented.

The courseisdivided in two parts, each one eight-
weeks long. Thefirst oneisvery practical. We teach how
to build compilers without worrying in proving why the
techniquespresented work. In the second part, we teach the
theory behind compiler construction. Thisinversionis
made on purpose. The objective isto introduce the subject
asfast as possible to enable students to build asimple
compiler in the first month. Students do not miss the theory
sinceit isintuitively clear that the parsing method used,
recursive descendent parsing, works.

Thefirst course part uses ten compilers made
using recursive descendent analysis and five compilers
made using CUP/Jlex[1] [8]. Thefirst ten compilers were
made in Javawithout the help of any tool. All of the

compilers[6] and amanual [7] explaining them are
availableto the students . In the firstday of thecourse, in
four 50-minutes classes, the following topics are seen:
? thedefinition of acompiler;
? the compiler cousins: where compiler techniques
may be employed;
? thephasesof acompiler (lexical analysis, syntax
analysis, semantic analysis, and code generation
and optimization).

In the secondcourseday, thefirst five compilers
are introduced. In these compilers, lexical analysisisvery
simple, trivial. We concentrate in the more interesting
parsing and code generation phases. A lexical analyzer can
be made without any sophisticated technique and we chose
to show more complexlexical analyzers later on. Code
generation israpidly presented to catch the imagination of
thestudents ? it seems something magical to
automatically transform onelanguage into another. None of
thefirst five compilers needs asymbol table? thereisno
semantic analysis. But the abstract syntax treeisbuilt for
the 5" compiler. Compilers 6 to 10 are seen one aday,
approximately. All compilers were madein Java.

The ten compilers made using the recursive
descendent parsing methodare presented in the following
paragraphs. Theimportant topicsintroduced with each of
them are discussed.

Compilers 1 through 5 use the same language
whose grammar is

Expr ="'('" Oper Expr Expr ')’
| Nunber

Oper ="+

Nunber ::='0" | "1" | ... | "9

Legal "programs’ in thislanguage are expressions like
1

(+12)

(- (+52) 4
Using this grammar we teach how to make alexical and a
syntax analyzer in Java Thelexical analyzer isvery
simple: it skips white spacesand returnsthe next character
? notethat al terminals are onecharacter tokens.

The parser isnot difficult either. It is composed by
methods of classConpi | er , which also contains one
method (next Token) for lexical analysis. Class
Conpi | er containsone method for each grammar rule ?
expr,oper , and nunber . Each parser method is
responsible for analyzing the corresponding grammar rule
and returns nothing (voi d). Some examples with even
simpler grammars are shown and the subject is not difficult
to be understood by the students. Conpiler 1 does not
generatecode ? itisinfact just aparser.

Thereisamethoderr or () whichiscalled
whenever alexical or parser error isfound. This method
prints a message and terminates the program. Note the
whole compiler isin classConpi | er.

Compiler 2 generates code using thesimpl est
possible way: by addingprint (Syst em out .pri ntln)
statementsto the parser code The target languageis C,
which means code generation is very simple. For example,
“(+ 1 2)”produces“(1 + 2)".

Compiler 3 generates assembly code. A stack-
based virtual machineisused. This compiler is not too
different from the previous ore. It showsthat non-
optimized code generation to assembly is generally easy to
do.

Compiler 4 evaluates the value of the expression
at compiletime. It showsthe very basic techniques of
interpreters ? to evaluate an expression isto interpret it.
Each parser method (expr andnunber) but oper
returns the value of the expression analyzed by the
corresponding rule.

Compiler 5 buildsthe AST (abstract syntax tree)
for the input expression. The AST isaset of objects
representing the input. These objects are instances of AST
classes Conposi t eExpr and Nurber Expr . Class
Conposi t eExpr represents an expression with an
operator, like“(+ 1 2)”.ClassNunber Expr represents
anumber. These classes inherit from abstract classExpr
which has an abstract genC method. Methodsex pr and
nunber of classConpi | er return objectsof the AST
corresponding to the expression they analyze:

Expr expr() { ... }

Nunber Expr number () { ... }

The course material [7] explains the two reasons
Conposi t eExpr and Nunber Expr mustinherit from
Expr:

? method expr of the parser returns either a
Conposi t eExpr or aNunber Expr object.If
theruleExpr ::= ‘(* Oper Expr Expr
)’ ischosen, instead of Expr ::= Nunber,
method expr returnsaConposi t eExpr object.
Otherwiseit returns an object of Nunmber Expr .
Therefore the return type of expr must bea
common superclass of Conposi t eExpr and
Nurber Expr . We created Expr for that;

? classConposi t eExpr hasthreeinstance
variables:

char oper;
Expr left, right;

| eft andri ght arepointersto theleft and right

expressions of acomposite expression. Both left

and right must be able to point either to a
Conposi t eExpr ortoaNunber Expr object.
Then their types should beExpr , acommon
superclass.

Code generation isrenoved from methodsex pr
and nunber of classConpi | er andplacedingenC
methods of the AST. Thereis an abstract methodgenCin
Expr and concretegenC methods in Conposi t eExpr
and Nunber Expr . The top-level parser method ismethod
conpi | e of classConpi | er. It returnsan object of type
Expr whoserea classat runtimeisone of theExpr
subclasses. By sending thegenC message to this object, a
method of Conposi t eExpr or Nurmber Expr iscalled.
Thisillustrates polymorphism in Java.

During the course, we try to teach as much object-
oriented programming as possible. And there is plenty of
opportunities for that in the design of the AST classes. All
the important aspectsof object-oriented programming are
explored: classes, inheritance, and polymorphism.

Compiler 6 uses alanguage that supports the
declaration of variables. A typical program would be
a=1b=7: (+ahb)
Thislanguage demands some semantic analysis, since a
variable may be declared twice and a non-declared variable
may be used in the expression following the colon.
However, we do not introduce semantic analysisin this
compiler, whichis only useful for showing new AST
classes (Pr ogr am Vari abl e, Vari abl eExpr) and a
more complete code generationto C? now the output can
be compiled by a C compiler and executed. The previous
compilers generate just the expression in C, without the
mai n function.

Again, there are new opportunities to teach object-
oriented programming here. The declaration of avariable’
“b = 77, isrepresented by an objed of classVari abl e.
Method genCof thisclassgenerates“int b = 7;” for
thestatement“b = 7”. When avariable appearsin an
expression, we should not use classVar i abl e of the AST
to represent it. Code generation for variableb when it
appearsinthe exression“ (+ a b) " isdifferent from the
code generation for the declaration of b. Thereforevariable
b in an expression should be represented by another class,
which isVar i abl eExpr . The grammar of language 6
definesthe following rule:

Expr ::= ‘(' Oper Expr Expr ‘)’
| Number
| Variable

! Variables arein fact constants, since their values cannot
be changed.
2 Source language of compiler 6.

Method expr of the parser returnsaVar i abl eExpr
object when the last option is chosen (corresponding to
Expr ::= Vari abl e). That meansVari abl eExpr
should inherit from Expr .

Compiler 7 uses thesame grammar as language 6.
It evaluates the expression through methodseval added to
several AST classes. Each AST class represents part of an
expression and theeval method of that class returns the
value of that part.

A hash table playstherole of a symbol table and
isused to keep the values of the variables. At the
declaration of avariable, the pair (name, value) isinserted
at thetable. When avariableisfound in the expression, its
valueisretrieved from the hash table. The compiler checks
if avariableisbeing declared twice and if it is declared
before used.

This compiler is another nice introduction to
interpretation (the other is compiler 4). Instead of
generating code to avirtual machine and interpreting it, this
compiler interpretsthe AST directly, an easy way of
building an interpreter.

Compiler 8 introduces new grammar rules with
long terminaslikei f ,t hen, andbegi n ? all previous
terminals had just one character. There are numbers with
more than one digit and commentsfrom / / till the end of
the line. The language supportsdeclaration of variables,

i f,read, andw it e statements. There are great
changesin thelexical analyzer which now uses integersto
represent terminals (previous|exical analyzers used the
one-character terminalsthemselves). There are new AST
classes: Assi gnent St at enent | f St at enrent
ReadSt at ement , andW i t eSt at enment .All of them
are subclasses of the abstract classSt at enment , which
declares an abstractgenC method.

Compiler 9 introduces several novelties related to
object-oriented programming. A classLexer iscreated for
lexical analysis? method next Token ismovedtoit. A
classConpi | er Er r or iscreated just for error signaling.
Class Compiler has the parsing methods. There are just one
object of each of classesConpi | er,Lexer, and
Conpi | er Er r or . Each one references the other two.
Variables have types. There are typesi nt eger ,
bool ean, andchar . Each typeisrepresented by aclass
of the AST and all type classesinherit from abstract class
Type. At runtime, only one object of each of the type

classesiscreated ? thereisno need to create more than
one. All objects representing, for example, typechar

would be equal to each other. Typesintroduce alot of
semantic checking: the if expression must have type
bool ean, theleft and right-hand side of an assignment

must have the same type, and so on.

Compiler 10uses agrammar with several new
rules. The language resembles Pascal and supports
procedures, functions, and loop statements. The symbol
table needs to be improved since there are global
subroutines and local variables andparameters? itis
necessary to use two hash tables, one for each scope. We
could have used amore efficient hash table but we did not
because this would be adistraction from the main goal s of
the course.

In this compiler there are new opportunities for
semantic analysis and code generation. For example, when
aprocedureis called the compiler should check the number
and types of the arguments. Code generation is not difficult
because procedure and function declarations are translated
to function declarationsin C ? the difficulties of the
subject are masked by the target |anguage.

The abstract syntax trees used in compilers 8-10
are not too abstract. We chose to add to them more
information than they usually have. All identifiers are
represented in the AST classes by pointersto objects. For
example, astatement “b = 1" isrepresented by an object
of the AST classAssi gnnent St at enent . Thisclass
has an instance variable of typeVar i abl e. An object of
this class referencesthe object of classVar i abl e that
represents“ b”. Usually “b” would be represented by string
“b”. Thisway of building the AST adds more object-
oriented programming to the compiler construction.

After studying theten compilers made using the
method of recursive descendent parsing, wepresent five
compilers made using CUP/JLex[1, 5]. Thesetools arethe
equivalent to YACC/Lex for Java. CUP isaparser

generator and JLex creates alexical analyzer from a
description of the terminals. These five compilers are the
equivaent of thefirst five compilers made by hand using
recursive descendent parsing.

The second part of the course deals with theory of
compiler construction. The studentslearn why therecursive
descendent parsing method works. It isinteresting to note
that, while studying the first ten compilers, the students
have the intuition that the method works. They ask
questionslike“what if wehad arule A ::=B | C and both B
and C start with the same terminal ?’. Thesequestionsshow
acorrect intuitive understanding of the method.

3. Conclusion

In the course described in this paper, the concepts
and techniques of compiler construction are introduced
incrementally through aseries of ten compilers. The
incremental and smooth additionsof features to each
language make it relatively easy to learn the subject. The
most attractive parts, parsing and code generation, are
introduced in the very first compilers, motivating the

students. In the course material, at the end of each compiler
description there are exercises relative to the new
techniques presented in that compiler. In the classes,
exercises are given after every new topic to involve
students with the subject.

In our course, students learn how to build a
complete compiler in the second course day. They get the
big picture of the subject immediately. All of the material
that follows brings only refinements (although important)
to the compilers taught in this day. Ghuloum [4] proposes a
similar teaching method using Scheme, although his
compilers are much more sophisticated than we thought
could be taught in an undergraduate course. It isinteresting
to note that the critics he makes on traditional courses are
virtually the sasme as ours.

By presenting the theory after and not before, we
create suspense on the reasons that make the recursive
descendent parsing method works. The compilers are a
motivation to study the theory. It isworth remembering
that it isin compiler construction that theory and practice
meet each other. Without theory, there would be no
systematic technique for compiler construction.

Several articles discusscompiler construction
courses[2], [3], [8], [10]. However, these articles focus on
the student assignments, the compilers the students should
implement. It can be acompiler for @) asmall ad-hoc
language, b) a subset of aknown language, c) an object-
oriented, functional, or logic language, d) areal languagein
which the Professor supplies part of the code (a“fill inthe
blanks” approach). Or the assignments can beamixture of
the above. In this article we stress another topic, the
teaching of compiler construction itself. By presenting
practice before theory we get the students interested in the
subject. By presenting the compiler techniquesin small
steps we keep them interested because the increments from
one compiler to the next are not that difficult to follow.

This course isfollowed in the subsequent semester
by acompiler laboratory course. Init, students build a
complete compiler for asmall object-oriented language.
Thislanguage is a subset of Java called Krakatoa (avery
significant name indeed). In fact, Krakatoa can be
considered the smallest Java subset that is object-oriented.
It has everything necessary to be considered object-oriented
and nothing more.

Code generation is made to C with all the
complexities brought by inheritance, polymorphism, and
message sendsto variables, this, and super. Although we
present a paper that describes how to generate code, thisis
not atrivial task to the students.

Since this laboratory compiler course has no
expositive classes, the Krakatoa compiler is made only with
the practical experience andtheoretica basis students
acquired in thefirst course, the one described in this paper.
Thisis, in our opinion, the greater evidence of the success
of this“incremental” course method.

All the course materia is available on the Internet

(6].
Bibliography

[1] Ananian, C. JLex: A lexical analyzer generator for
Java.

http://www.cs.princeton.edu/~appel/modern/javal/JL ex
2003.

[2] Baldwin, D. A compiler for teaching about compilers.
In Proceedings of the 34th I GCSE technical symposium
on Computer science education. (Reno, Nevada, Feb. 19-
23, 2003), 220-223.

[3] Coon, L. A sequence of lab exercises for an
introductory compiler construction course. SGCSE
Bulletin 28, 3 (Sep. 1996), 60-64.

[4] Ghuloum, Abdulaziz. An incremental approach to
compiler construction. In Proceedings of the 2006 Scheme
and Functional Programming Workshop, Portland, OR,
2006.

[5] Grune, D., Bd, H., Jacobs, J.H. and Langendoen, K.
Modern Compiler Design. John Wiley & Sons, 2000.

[6] Guimarées, José de O. Compilersused in the course.
Availableat http://www.dc.uf scar.br/~jose/courses/cc-
en.htm

[7] Guimaraes, José de O. Learning Compiler Construction
by Examples. Course material. Available at
http://www.dc.uf scar.br/~jose/courses/cc-en.htm.

[8] Hudson, S. CUP parser generator for Java.
http://www.cs.princeton.edu/~appel/modern/javal CUP.

[9] Neff, N. OO Design incompiling an OO language. In
Proceedings of the thirtieth S GCSE technical symposium
on Computer science education. (New Orleans, Louisiana,
Mar. 24-28, 1999), 326-330.

[10] Tempte, M. A compiler construction project for an
object-oriented language. In Proceedings of the twenty-
third SSGCSE technical symposium on Computer science
education. (Kansas City, Missouri, Mar. 5-6, 1992), 138-
141.

