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Abstract There are several aspects to consider when analyzing an object-based or
object-oriented language: support for single or multiple inheritance, dynamic or static
typing, definition of subtyping, differences between subtyping and subclassing, and
support for inheritance. So different are the languages that apparently it is very or
even extremely difficult to translate code in one language to any other. This article
shows that this is not exactly true. We show how to translate code from and to several
simplified object-based and object-oriented languages. The translation schemes help us
to better understand object-oriented programming.
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1 Introduction

This article explain how to do code translation between several abstract language
models. Abstract models are used because it would be impossible to cope with all
details of real languages. Six language models are used, which are based on C++
[Stroustrup 1991], Java [Gosling et al. 2007], Smalltalk [Goldberg and Robson 1983],
Green [Guimarães 2007] [Guimarães 2006], ClassMorph, and Oberon [Niklaus 1988].
ClassMorph is a fictitious object-based language (without inheritance) but sup-
porting polymorphism.

Throughout this article, we will use the Java syntax for all language models.
A class Store in this language is shown in [Fig. 1]. Keyword this is the equiva-
lent of self in other object-oriented languages such as Smalltalk. A class B that
inherits class A is declared as

class B extends A { ... }

However, the terminology we use is mainly that of Smalltalk: “x.m(0, 1)” is
a message send. “m(0, 1)” is the message sent to the object referred to by x

at runtime. Variables declared inside a class, such as n of Store, are instance
variables. A method signature is composed by the method name, its parameter
types, and the return value type. For example, the method signatures of set and
get of class Store [Fig. 1] are:

void set(int)

int get()



class Store {

public void set( int n ) {

this.n = n;

}

public int get() {

return this.n;

}

private int n;

}

Figure 1: Example of a class in Java

The declared or compile-time type of a variable is the type with which the
variable was declared. For example, the declared type of instance variable n

is int. An expression have a compile-time type in a statically-typed language,
which is the type the compiler assigns to it. For example, the compile-time type
of 0 + 1 is int in Java. Whenever a class C inherits from a class B, we say B

is a direct superclass of C. If A is a direct or indirect superclass of B, then we
say that A is an indirect superclass of C. In this article superclass means direct
superclass. A hierarchy is a set S of classes such that for any two classes A, B ∈ S,
one of two things happens: a) one of the classes is a direct or indirect superclass
of the other or b) A and B share a common direct or indirect subclass or direct
or indirect superclass. We say S is the hierarchy of a class A if A ∈ S. Given two
hierarchies S and R, either S ∪ R = ∅ or S = R.

The language models of this article share some features, described next.

– There are four basic types: int, char, boolean, float.

– All objects are dynamically allocated and a variable whose type is a class is
in fact a pointer. At runtime, the variable will refer to an object. Except in
the Smalltalk-based model, basic values such as ′A′, 0, true, and 3.1415 are
not objects and basic types are not classes.

– In a message send x.m(a, b) the compiler checks whether the declared type
of x is a class and whether this class or any of its superclasses (direct or
indirect) defines a method m that can accept a and b as parameters. Assume
the declared type of x is X, the language is statically-typed, and supports
only single inheritance. There is a compile-time search: first the method is
searched for in class X, then in the superclass of X (if any), the superclass
of superclass, and so on. This algorithm is easily generalized to multiple
inheritance (as will be seen, there will not be any ambiguity in which method
m should be chosen, if the hierarchy has more than one).



– In a message send x.m(a, b), there is a runtime search for method m. Assume
the language supports only single inheritance. Note that it does not matter
whether the language is static or dynamically-typed. At runtime, suppose x

refer to an object of a class A, which must be a subtype of the declared type
of x (a subtype is defined in the following paragraphs). The runtime system
searches for a method m in the public methods of class A. If none is found, the
search continues in the superclass of A, in the superclass of the superclass,
and so on. This algorithm is easily generalized to multiple inheritance (there
will be no ambiguity in which method to choose, if there is more than one).

– When the compiler finds a message send this.m(a, b) inside a method of
a class A, it checks whether there is in A a private method m that can receive
a and b as parameters. If there is one, this method will be called at runtime
— there is no runtime search for a method.

If no private method m is found in A, the search continues in the public
methods of A, then in the public methods of the superclass of A, and so on.
If no method is found, the compiler signals an error. At runtime, suppose
this refer to an object of a class B, which must necessarily be a subclass of
A — a subclass, never a subtype as defined in the following paragraphs. To
execute statement this.m(a, b), the runtime system searches for a method
m that can receive a and b as parameters in the public methods of B. The
search continues in the superclass of B, the superclass of superclass, and so
on. These algorithms are also easily generalized to multiple inheritance.

Note that this compile and runtime searches are made in statically and
dynamically-typed language models.

– When the compiler finds a message send super.m(a, b) inside a method of
a class A, it searches in the superclass of A for a public method m that can
receive a and b as parameters. If none is found, the search continues in the
superclass of the superclass, and so on. At runtime no search is necessary:
the method to be called is defined at compile-time. This search is made in
statically and dynamically-typed language models.

– An abstract class, declared as abstract class A { ... } declares method
signatures but it does not define any method bodies. This is different from
most languages in which an abstract class may have some or all methods
with bodies.

– All instance variables are private and therefore only methods of the class
can access them. A method is either public or private.

– There are no static methods (C++ or Java) or class methods (Smalltalk). A
method is only called when a message is sent to an object. Classes are not
considered objects.



– A class cannot have two methods with the same name but different num-
ber/types of parameters. This is not a limitation, since before the translation
the overloaded methods can be renamed.

– A cast from an expression expr to type A is make with the following syntax:
x = (A ) expr

The resulting value is assigned to x. There may be a runtime error because
expr may not be convertible to A. For example, expr may refer at runtime
to an object of class B. If B is not a subtype of A, there is an error.

In a statically-typed language, a class B is subtype of a class A if an object
of B can be used where an object of A is expected without causing any runtime
type errors. That is, if the compile-time types of variables aa and bb are A and
B, respectively, and B is a subtype of A, then the assignment aa = bb is type-
correct. Consider a type as a class or a basic type unless stated otherwise. Note
that assignments, which encompasses parameter passing, are the only statements
in which the subtype definition shows up.

The language models used in the translations are described below. Consider
that their syntax are equal except in those cases in which they must be obviously
different. Only the important details are described in this article, the rest being
ignored.

1. Statically-typed language with single inheritance, subtyping equivalent to
subclassing. That is, class B is subtype of class A if B inherits directly or
indirectly from A.

This language model will be called Oberon-M. The name “Oberon” is only to
remember the model characteristics. No other Oberon [Niklaus 1988] feature
than those just cited are used. The same observation is valid to the other
models.

2. Statically-typed language with multiple inheritance, subtyping equivalent to
subclassing. That is, class B is subtype of class A if B inherits directly or
indirectly from A.

Suppose class G inherits from classes E and F such that these classes have
no common superclass — see an example in [Fig. 2 (a)]. Then no public
method should be inherited by both E and F. There should be no name
conflict between inherited methods. This is not a limitation, since conflicting
methods can always be renamed before the translation.

Suppose class A of [Fig. 2 (b)] defines a method m. Then D inherits m from A

by two different paths: ABD and ACD. In this case, we demand class D defines
a method m to remove the ambiguity. In objects of D, there will be only one
set of instance variables of A.



Figure 2: Two examples of multiple inheritance

In classes with a single superclass, as B or C of [Fig. 2 (b)], a method m of
the superclass can be called using the syntax “super.m(...)”. If there is
more than one superclass, its name should be cited in the message send to
super: in class D, super(B).m(...) will call method m of B (which may be
inherited from A).

This language model will be called C++-M.

3. Statically-typed language with single inheritance and Java-like interfaces.
An interface is declared as a class but it only defines method signatures. An
interface can inherit from any number of interfaces. A class can implement
any number of interfaces using the syntax:

class A implements I, J, K { ... /* class body */ }

If a class A implements interface I, as in this example, then A must define all
methods declared in this interface. Otherwise there is a compile-time error.
An interface may be the return value type of a method or the declared type
of a variable. But since interfaces are not classes, they cannot be used to
create objects with “new”.

In this language model, a type is a class or an interface. A type B is subtype
of a type A if:

– A is interface and B inherits from A (in this case, B is an interface too) or
B implements A (in this case, B is a class);

– A is a class and B inherits from A;

– B is subtype of a subtype of A.

This language model will be called Java-M.



4. Dynamically-typed language with single inheritance. Variables are declared
but without types. All assignments are valid. This is the only model in which
basic types (char, integer, boolean, ...) are considered classes. Then a basic
value such as ′A′, 0, true, and 3.1415 is considered an object and it must
be dynamically allocated.

Every method should return a value. If a method does not return anything,
it automatically returns this.

This language model will be called Smalltalk-M.

5. Statically-typed language with single inheritance and a type system in which
subtyping is independent from subclassing and equivalent to set inclusion of
methods.

In this model, a type is different from a class. Every class has a type. The
type of a class is the set of signatures of its public methods. Remember a
method signature is composed by the method name, its parameter types,
and the return value type. For example, the type of class Store of [Fig. 1],
type(Store), is {void put(int), int get()}. The type of a class B is a
subtype of the type of a class A if B has at least all the method signatures
of A; that is, type(A) ⊂ type(B) where type(X) is the type of class X. For
short, we say that class B is a subtype of A.

Note that every subclass is a subtype but there may be a subtype that is
not a subclass — it only needs to define all the method signatures found in
its supertype.

This language model will be called Green-M.

6. Statically-typed object-based language with subtyping equivalent to set in-
clusion of methods as in Green-M. This is not an object-oriented language
as it does not support inheritance. But it does support classes and uses a
subtype definition equal to that of Green-M.

This language model will be called ClassMorph-M. Language ClassMorph is
a fictitious language.

In the translation between models, we are going to consider relevant only
some specific language features:

1. assignments. This encompasses the passing of real arguments in method calls.
When a real method argument is set to a formal method argument, there is
an implicit assignment;

2. inheritance;

3. declaration of variables and method parameters;



4. declaration of instance variables;

5. declaration of public and private methods;

6. message sends to this as in “this.m()” in which m is a method name. There
are two cases to consider: the corresponding method m is public or private;

7. message sends to variables as in “x.m()” in which x is a variable. This
case encompasses also message sends to variables accessed through this:
“this.x.m()”;

8. message sends to super as in “super.m()”;

9. creation of an object as in “a = new A()”, in which an object of class A is
created;

10. treatment of basic types (int, char, boolean, float). In Smalltalk-M, basic
types are classes and therefore basic values (1, ′A′, true, etc) are objects. In
all other language models, basic values are not objects.

2 Translation between Object-Oriented Languages

This section shows how to translate code from some language models to others.
It is important to note that almost all statements and declarations are translated
to themselves in the target code. This text only comments the parts that changes
in the translation.

The set of programs in some languages are a subset of the set of programs in
other languages. Therefore, no translation is really necessary. The conversions
that match this criteria are:

1. from Oberon-M to C++-M, because single inheritance is a special case of
multiple inheritance and the subtype definitions are equal in both languages;

2. from Oberon-M to Java-M or Green-M. These languages support only sin-
gle inheritance. Since the subtype definition of Java-M and Green-M are
more encompassing than that of Oberon-M, an assignment in Oberon-M
will remain type-correct in Java-M or Green-M. Then every statement in
Oberon-M is also a statement in Java-M or Green-M;

3. from ClassMorph-M to Green-M. No inheritance (ClassMorph) is a special
case of single inheritance (Green-M). Since the subtype definition of both
models are equal, every statement of ClassMorph-M is also a statement of
Green-M.

Throughout this section we will use some definitions in the algorithms, which
are given below.



– HC(A), where A is a class, is the hierarchy of A, the set of classes calculated as
follows. Consider each class of the program a vertex in an undirected graph.
There is an edge between two classes if one inherits from the other. Then
Hc(A) is the set of all classes connected to A; that is, the set of classes found
in a depth-first search starting at A.

– methodsOf(A) is the set of methods declared in class A. Inherited ones are
not included.

– allMethodsOf(A) is the set of methods of class A, including the inherited
ones.

– superclassOf(A) is the set of direct superclasses of class A. In an single
inheritance language, superclassOf(A) returns a single class or nil.

– allSubclassesOf(A) is the set of direct and indirect subclasses of class A.

In the translations that follow, sometimes it is necessary to rename a method
or instance variable. Assume that the method or variable gets a new name that
is not used anywhere in the program. This observation is fundamental in all
algorithms of this section.

Oberon-M to ClassMorph-M

This is a translation from a single inheritance statically-typed model to a
language without inheritance but with polymorphism. We are going to translate
one class at a time. Let A be a class in the Oberon-M model we are going to
translate to a class A′ in ClassMorph-M — the class name could be the same in
both models. Different names are used only to make the text clear. The behavior
of class A in Oberon-M should be the same as the behavior of A′ in ClassMorph-
M.

It is not necessary to consider in the translation all the aspects cited in the
end of [Section 1]. In particular, assignments, declaration of variables, creation of
objects, and treatment of basic types are the same in Oberon-M and ClassMorph-
M. This will soon be justified.

A general view of the translation is as follows: class A and its direct and
indirect superclasses are collapsed into class A′. Then class A′ has all instance
variables and methods of A (public and private) and all of its superclasses. All
instance variables and private methods are renamed as are all methods that are
overridden in subclasses. The translation is explained in details now.

Class A′ has all the private methods and instance variables of class A and all
its direct and indirect superclasses. These methods and variables are renamed
in order to avoid name clashes. The set of public methods of A′ is calculated by
the following algorithm. The result is put in set S.



Let S be the set of public methods of A′, initially empty.
S = set of public methods of A
X = superclassOf(A)

while X <> nil do
begin
add to S all public methods of X not yet in S

rename those public methods of X already in S and
add them to the private part of A′

X = superclassOf(X)

end
As stated previously, if a class does not have a superclass, then

“superclassOf(X)” returns nil.
In a message send x.m() in which x refers to an A object of Oberon-M,

the method m called will be searched at runtime starting in the class of the
object, A. If m is not found in A, the search continues in the superclass, the
superclass of the superclass, and so on. In ClassMorph-M, the method called at
runtime by x.m() should be the same as in Oberon-M. This do happens because
the algorithm above, executed at compile-time, is equivalent to the runtime
search for a method in Oberon-M. The method called in both cases is the same.
Therefore, an Oberon-M message send x.m() in which m corresponds to a public
method does not need to be changed in the translation.

Exactly the same reasoning is applied in message sends to this when this

refers to an A object in Oberon-M and the corresponding method is public. That
is, we have “this.m()” and m corresponds to a public method. The runtime
search in Oberon-M is converted to the compile-time search made by the algo-
rithm above.

There are two other occasions in which a method is called in Oberon-M:

– in message sends to this when the corresponding method is private;

– in message sends to super.

In both cases, the method to be called is determined at compile-time. Then in
ClassMorph-M we already know which method to call at compile-time. It is only
necessary to change the name of the messages to reflect the renamed methods,
when this is the case. That is, if a message send super.m() in class A calls method
m of superclass W of A, this message send should be changed to super.m_W() in
class A′ of ClassMorph-M if method m of W was renamed to super.m_W(). As
seen, the overridden public methods are renamed.

With this translation scheme, every message send to an A object will call the
same method as the corresponding message send in class A′. Note the grouping
of methods of A and its superclasses in A′ demanded that some runtime searches



in Oberon-M are made at compile-time in ClassMorph-M. This runtime opti-
mization is not for free: the code of methods of superclasses of A are tailored
to A′. If another class inherit the same superclasses as A, the methods should
be changed specifically to this class in ClassMorph-M. Code duplication is the
price of transforming runtime searches of Oberon-M in compile-time searches in
ClassMorph-M.

Why does this work ? First, variable declaration are not changed — every
variable in ClassMorph-M has the same type as in Oberon-M. Second, if X is
supertype of Y in Oberon-M, then X is a direct or indirect superclass of Y. This
mean that X′ is supertype of Y′ in ClassMorph-M, in which X′ and Y′ are the
classes in ClassMorph-M corresponding to X and Y. This occurs because the set
of public methods of a class, considering the inherited ones, does not change
with the translation — they are preserved by the algorithm. And because the
subtype definition of ClassMorph-M is more general than that of Oberon-M. The
consequences of this is that any assignment in Oberon-M is also correct in the
translated ClassMorph-M code.

To do this translation by hand is an excellent way of learning the basics of
object-oriented programming. In particular, it is an excellent way of learning
how message sends to this and super works. This translation can be made
from Green-M to Green-M — one does not need to use ClassMorph as the
target language.

Java-M and Green-M to ClassMorph-M

This translation is the same as that from Oberon-M to ClassMorph-M. It
works because the subtype definition of ClassMorph-M is more encompassing
than that of Java-M and equal to the subtype definition of Green-M. If class
X is supertype of class Y in Java-M or Green-M, then necessarily class Y′ in
ClassMorph-M has at least all public methods of class X′. Then X′ is a supertype
of Y′ in ClassMorph. Consider that a class X in Java-M or Green-M is translated
to X′ in ClassMorph-M.

Oberon-M, Java-M, Green-M, or ClassMorph to
Smalltalk-M

Translation from statically-typed languages to a dynamically-typed one.
A class A in the source language is translated to class A′ in Smalltalk-M. If B

inherits from A, then B′ inherits from A′.
Every statement in the source language is translated to itself in Smalltalk-

M. Every variable or method declaration is translated to a declaration without
types in Smalltalk-M. This language has the most liberal type system, which is



dynamically-typed. We can consider that, at compile time, any type is subtype
of any other. Therefore, every subtype in the source language remains subtype
in Smalltalk-M.

At runtime, in every message send there is a search for a method starting in
the class of the object that received the message. This search continues in the
superclass, superclass of the superclass, and so on. This search is not modified
by the translation since the source languages support at most single inheritance,
as Smalltalk-M.

The source languages are statically-typed and the method is always found
at runtime. The same happens in the code translated to Smalltalk-M, for the
semantics of it is not changed.

The source languages do not consider basic types as classes. The target lan-
guage does. This does not cause any problems, since every use of a basic type
or value in the source languages remains exactly the same in Smalltalk-M. To
understand how this works, one can study the automatic conversions of ba-
sic values in Green [Guimarães 2006] and the boxing/unboxing feature of Java
[Gosling et al. 2007]. In these languages, it is as if basic values were objects.
Whenever necessary, they are converted to objects using wrapper classes. For
short, an expression 1 or 1 + 2 in the source language should be translated to it-
self in Smalltalk-M. And an assignment x = y in which x and y have basic types,
is translated to itself in the Smalltalk-M code and the meaning of it remains the
same in both languages.

C++-M to Oberon-M

Translation from multiple inheritance to single inheritance in statically-typed
languages. Some language features that appear in the C++-M code are trans-
lated to the same code in Oberon-M: assignments, declaration of variables, dec-
laration of instance variables, message sends to variables, creation of objects,
and treatment of basic types.

The general view of this translation scheme is as follows: a multiple inher-
itance class hierarchy in C++-M is converted to a single inheritance hierarchy
in Oberon-M. As an example, the C++-M class hierarchy of [Fig. 3 (a)] is con-
verted to the single inheritance hierarchy D-C-B-A, in which D inherits from C

that inherits from B that inherits from A.
This brings some problems. In this example, class B was introduced, in the

Oberon-M code, between class C and its superclass A (in C++-M). Calls to super

and this in C may call B methods in the flattened hierarchy in Oberon-M, which
never happens in the original C++-M code. That is corrected by creating new
methods in the Oberon-M classes that prevents any interference between two
sister classes like B and C. Each of these methods play the same role as a specific



method of the class and has a name different from any other method in the
program. Since the method name is different from any other, no interference
among classes may arise.

The translation will be explained in details now.
We are going to explain how to do the translation of a complete hierarchy

at a time. That is, the translation will be made not only for a class A but for all
classes of the set HC(A).

Although the inheritance hierarchy in the C++-M code is flattened in the
translation to Oberon-M, if class B is direct or indirect subclass of A in C++-
M, B should remain direct or indirect subclass of A in Oberon-M. Let us study
two cases, shown in [Fig. 2]. Remember that there is no name conflict between
inherited methods. In case (a), in the Oberon-M code there will be a class G that
inherits from E that inherits from F. This will be represented as G-E-F, a single
inheritance hierarchy. Since methodsOf(E) ∩ methodsOf(F) = ∅, no F method
will be overridden in class E. Of course, it is easy to generalize this case when a
class A inherits from Ai, 1 ≤ i ≤ n and

1. Ai and Aj has no common direct or indirect superclass when i 6= j;

2. allMethodsOf(Ai) ∩ allMethodsOf(Aj) = ∅ for i 6= j.

In [Fig. 2 (b)], we cannot simply flatten this inheritance hierarchy to D-C-B-A

because this could change the meaning of some message sends. Let us see the
example shown in [Fig. 3 (a)]: suppose class A defines a method p which is over-
ridden in class B. Since D inherits p from A by two different paths, we demand p is
overridden in D too. Class C defines a method m that has the following statement:

this.p();

At runtime, this message send may call different p methods: in objects of C, it
will call method p of A since C does not define a p method (assume this). In
objects of D, method p of D will be called because the search for p begins at D.
For short, we will use D::p for method p of class D.

If this hierarchy is converted to the single inheritance hierarchy D-C-B-A in
Oberon-M, then in objects of C the message send this.p() will call method
B::p at runtime. This is not the semantics of the original C++-M code, which
calls method A::p.

The problem is that class B in the Oberon-M code was introduced between
C and A. To correct this we have to change all message sends to this when the
method is public. Suppose there is a message send this.p(...) inside some
method of a class X. Change this to this.X_p(...), where X_p is a name that
does no appear anywhere in the program. Do a search for method p starting
in class X. The search continues in the superclass of X, superclass of superclass,
and so on till the method is found in class Y, which may be X, the first class
searched. Rename the method found to private_p and move it to the private



Figure 3: Modifications in the C++-M hierarchy in preparation to translate it
to a single inheritance language

part. Create a public method called p that just calls private_p. Create a method
X_p equal to p. This will be the “p” method of class X, the method that will not
be disturbed by the introduction of an alien superclass between X and Y (as
superclass B was introduced between C and A bringing with it a method p that
changed the semantics of the message send this.p() in class C).

Now go down in the subclasses of X and do the same as above for each method
p found: when a method p is found in a direct or indirect subclass Z of X, rename
it to private_p and move it to the private part. Create a public method called
p that just calls private_p. Create a method X_p equal to p. Note that when
the algorithm goes up in the X hierarchy, only one class is modified. When it
goes down, all subclasses are changed. Note that private_p and X_p are just
method names that do not appear anywhere in the program.

The semantics of the original C++-M code is preserved in the translated
Oberon-M code because the renaming of methods neutralize any alien classes
introduced between the class and its superclasses. Let us see the example of
[Fig. 3]. The changes described above were applied to the hierarchy (a) producing
the hierarchy (b). In the Figure, an arrow between methods means that a method
just calls the other. For example, the only statement of method A::p is a call to
method private_p passing to it all of its real arguments.

When we translate the hierarchy of [Fig. 3 (b)] to Oberon-M, we get D-C-B-A.
In objects of D, the message send this.C_p() in method C::m will call method
D::C_p, which just calls D::p. In objects of C, the message send this.C_p() in



method C::m will call method A::C_p, which just calls A::p. In both cases the
semantics of the original C++-M code is preserved.

Does this flattening of the hierarchy changes the meaning of message sends
to variables ? That is, if x.m() calls at runtime a method X::m in the C++-M
code, does this call a different method in the Oberon-M code ? There is a runtime
search for a method for the message send “x.m()”. The search for a method m

begins at the class of the object x refers to at runtime. Suppose this class is
X, which may inherit from several superclasses in a complex hierarchy in the
C++-M code. However, there will never be an ambiguity on this search because
either X define a m method or just one of the direct superclasses of X supplies
one (which may be inherited from a superclass). Then it does not matter if this
search is made in a multiple or in a single inheritance hierarchy. To understand
that, suppose that, in C++-M, the search for a method m starts in class X and a
method m is only found at a direct or indirect superclass Y of X. In Oberon-M, the
search will start in class X also. However, some classes may have been introduced
between X and Y, classes that are not between X and Y in the original C++-M
hierarchy. It does not matter, because these inserted classes do not have a m

method according to the definition of the C++-M model. Then method m will
be found in class Y as in the C++-M code.

There is another problem with the example of [Fig. 3 (a)]. Suppose classes A
and B define a method t (not shown in the Figure). A statement super.t() in
class C will call method A::t at runtime. After the translation to Oberon-M, the
hierarchy of this Figure becomes D-C-B-A and super.t() in C will call B::t,
changing the original C++-M meaning of the message send. This problem is
solved by creating two new methods in class A: private_t and A_t. The original
method A::t is renamed to private_t and moved to the private part of the
class. Methods t and A_t are created in the public part. These methods just call
method private_t passing its real parameters to it. Note that private_t and
A_t are just method names that do not appear anywhere in the program.

Now message send super.t() in C is changed to super.A_t(). Since there is
no other method called A_t() in the program, the correct method will be called.

It is time to give the details of the translation of C++-M to Oberon-M,
which is made below. The translation scheme is described by changes in the
C++-M code in order to create the Oberon-M code, just like a refactoring
[Fowler et al. 1999].

A C++-M program is composed by classes which can be divided in sev-
eral class hierarchies: HC(A1), HC(A2), ..., HC(An). By the definition of HC(A),
HC(Ai) ∩ HC(Aj) = ∅ if i 6= j. The translation algorithm is then

for each hierarchy HC(A) of the C++-M program do:
let S = HC(A)



do a topological ordering of the set S obtaining Bn, ..., B2, B1

in which B1 has no superclass and Bn has no subclass.
create a single inheritance hierarchy Bn-...-B2-B1 in Oberon-M.
for each class X of the set Bn, ..., B2, B1 do:

for each message send this.p(...) of class X
in which p is a public method, do:

in the Oberon-M code, change this message send to this.X_p

where X_p is a name that does not appear anywhere
in the program.
do a search for a method p starting in class X and
continuing in the superclasses of X (in the C++-M hierarchy).
suppose method p is found in class Y.
rename this method to private_p (a new name) and move it
to the private part.
in the Oberon-M code, create public methods p and X_p.
these methods just call private method p

passing its real parameters to it.
for each class Y ∈ allSubclassesOf(X) in C++-M, do:

if class Y has a method p

then
in Oberon-M, rename method p to private_p

(a new name) and move it to the private part.
in Oberon-M, create public methods p and X_p.
these methods just call private method p passing
its real parameters to it.

endif
for each message send super.t(...) or super(W).t(...)
in class X of C++-M, do:

in C++-M, do a search for method t starting in W or in
the superclass of X (if there is only one).
the search continues in the superclass, superclass of the
superclass, and so on. Let Y be the class in which
method t is found.
in class Y in Oberon-M, create two new methods:
private_t and Y_t.
the original method Y::t is renamed to private_t and moved
to the private part of the class. Methods t and Y_t are created
in the public part. These methods just call method private_t

passing its real parameters to it.



Figure 4: Interface hierarchy in Java-M that parallels that of the C++-M code

This algorithm orders the classes of the C++-M hierarchy HC(A) in topolog-
ical order Bn, ..., B2, B1 (of course, some Bi is A). The topological order preserves
the subclassing relationship by definition: if B is a direct or indirect subclass of A
in C++-M, then B is direct or indirect subclass of A in Oberon-M too. Therefore
assignments are not changed in the translation.

Java-M to C++-M

Translation from a language with single inheritance with interfaces to lan-
guage with multiple inheritance.

For each interface I in Java-M, create an abstract class I′ in C++-M. If I
inherits interface J in Java-M, I′ inherits class J′ in the C++-M code.

For each class A in the Java-M code, create a class A′ in the C++-M code
with the same body. If A implements interface I, make A′ inherit from I′. If A
inherits from class X, make A′ inherit from X′.

Whenever X is subtype of Y in the Java-M code, X′ will be subtype of Y′ in
the C++-M code. Then the subtype relationships are preserved by this scheme.
Since there is no other translation, the C++-M code will have the same behavior
as the Java-M code.

C++-M to Java-M

Translation from multiple inheritance language to language with single in-
heritance with interfaces. There are two ways of doing this translation.

The first and easy way is to convert C++-M to Oberon-M. The resulting
code will be in Java-M too. But this destroys any multiple inheritance hierar-



chies found in the original code. The second way is to flatten every class and its
superclasses to a class without ancestors, as was made in the translation from
Oberon-M to ClassMorph-M. Then hierarchies of interfaces recreate the hierar-
chies of the C++-M code. Let us detail this second way of translating C++-M
to Java-M.

For each program class A in C++-M, the Java-M code has an interface and a
class : an interface IA′ with all the public methods of A, including those inherited,
and a class A′ that implements IA′.

The classes of the Java-M code, such as A′, are obtained by first converting
all classes of the C++-M code to Oberon-M and then converting all classes to
ClassMorph-M. Each of the resulting classes is a self-contained class without
superclass. Interface IA′ is more easier to build: just collect in a set all public
methods of the C++-M class A. Make IA′ inherit from interface IX′ if A inherits
from X in C++-M. This creates an interface hierarchy in Java-M that is parallel
to the class hierarchy of the C++-M code. Make A′ implement IA′ — this will
never lead to compile-time errors because A′ has all the methods of the C++-M
class A and all its direct and indirect superclasses. See an example in [Fig. 4].

A variable declared with type A in C++-M is declared with type IA′ in Java-
M. An expression new A(...) to create an object in C++-M is translated to
new A′(...) in Java-M.

If X is supertype of Y in C++-M, will X′ and IX′ be supertypes of Y′ and IY′

in Java-M, respectively ? Clearly X′ is not a supertype of Y′. In fact, no class
has any superclass and therefore no class has any supertype that is a class. But
IX′ is supertype of IY′ for the interface hierarchy mimics the class hierarchy of
C++-M.

Consider an assignment x = y in C++-M in which the declared types of x
and y are X and Y. Then X is a direct or indirect superclass of Y. In the Java-M
code, the types of x and y will be IX′ and IY′ with IX′ supertype of IY′ — the
subtype relationships of C++-M are preserved in Java-M. An object creation
new A(...) in C++-M is translated to new A′(...) in Java-M. Consider that:

– expression new A(...) in C++-M has type A. This expression can be used
whenever an object of a supertype of A is expected;

– expression new A′(...) in Java-M has type A′ and is subtype of IA′ (it
implements IA′).

If A is a subtype of X in the C++-M code, IA′ is a subtype of IX′ in Java-M.
If the expression new A(...) is correctly used in C++, it is used where an
object of A or a supertype (like X) is expected. After the translation, in Java-M,
new A′(...) is used where IA′ or a supertype (like IX′) is expected. Then no



compile-time type error is introduced by the translation.

C++-M to Green-M

Translation from multiple inheritance language to a language supporting sin-
gle inheritance with subtyping based in set inclusion of methods.

The translation here is very similar to that from C++-M to Java-M. The first
alternative is to convert the C++-M code to Oberon-M. The resulting code is in
Green-M too. The second alternative is to flatten every class A of C++-M into
a class A′ without a superclass in Green-M. This is made as in the translation
from C++-M to Java-M. However, it is not necessary to create Green-M classes
IA′ corresponding to the interfaces IA′ of Java-M. These interfaces were created
to preserve in Java-M the type hierarchy of C++-M.

This is not necessary in Green-M: if class X is supertype of class Y in C++-M,
then Y must inherit directly or indirectly from X. Therefore, Y′ has at least the
public method signatures of X′ and, by the Green-M definition of subtyping, X′

is a supertype of Y′.

Java-M to Green-M

Translation from language with single inheritance with interfaces to language
supporting single inheritance with subtyping based in set inclusion of methods.

Each class A is translated to a class A′ in Green-M with the same body and
superclass, if any. Each interface is translated to an abstract class. Any other
statement or declaration is the same in Java-M and in Green-M.

This scheme preserves subtyping. If X is supertype of Y in Java-M, then
Y has at least the method signatures of X. This is true either because of the
inheritances, in which methods are inherited, or because implementations of
interfaces, in which the compiler demands that a class implements the interface
methods. Therefore, X is a supertype of Y in Green-M. Note that X, Y, or both
may be interfaces in Java-M and that both are classes in Green-M.

Smalltalk-M to Green-M

Translation from dynamically-typed language to language supporting single
inheritance with subtyping based on set inclusion of methods.

A class A in Smalltalk-M is translated to class A′ in Green-M. If A inherits from
class B, then A′ inherits from B′. Variables, which are typeless in Smalltalk-M, are
declared with type Any in the Green-M code. The same applies to return value
type of methods. Consider that Any is a class without methods and therefore
supertype of every other class (in the real language Green, there is a class Any



that is inherited by any class that does not inherit from any other). Therefore
every variable or expression in the translated code has type Any.

For each method m of A in Smalltalk-M, create in the Green-M code an ab-
stract class Method_m_k where k is the number of parameters of m. This class
has just one abstract method:

Any m(Any x1, Any x2, ..., Any xk)

A method call
x.m(x1, x2, ..., xk)

in Smalltalk-M is translated to
((Method_m_k ) x).m(x1, x2, ..., xk)

in Green-M. First x is cast to Method_m_k and then the message is sent.
Class Method_m_k with its single method is necessary to call method m in

Green-M. Since the compile-time type of x is Any in Green-M, a methodless
class, no message can be sent directly to x. Note that the real parameters of the
message send, xi, have type Any and the formal parameters of the method m of
class Method_m_k also have type Any.

Does this scheme also work with basic values such as 1, ′A′, or 3.14 ? Not
yet, since a message send a + 1 in Smalltalk-M would be translated to a + 1

in Green-M and this would be a sum of a variable of type Any with 1.
To solve this problem, create in Green-M a wrapper class for each of the

basic types int, char, boolean, and float. The wrapper classes have names
Int, Char, Boolean, and Float. Every wrapper class stores a value of the corre-
sponding type and has methods get and set to retrieve and set the value (much
like class Store of [Fig. 1]). Every wrapper class has methods corresponding to
the operations the basic type supports. For example, class Int has methods

Any plus (Any other )

Any minus(Any other )

Any mult (Any other )

Any div (Any other )

For each wrapper class, there should be created classes of the kind Method_m_k

as if the wrapper classes were in the Smalltalk-M code. Then there is a class
Method_plus_1 with method

Any plus(Any other)

We are going to make Green-M simulates the basic values and types of
Smalltalk-M. First, each basic value literal such as 1, ′A′, or 3.14 of the Smalltalk-
M code is translated to an object creation in Green-M using the appropriate
wrapper class. For example, 1 in Smalltalk-M is translated to

new Int(1)

in Green-M. And “x = 1” is translated to “x = new Int(1)”. This is type-



correct: x has type Any, supertype of Int.
Second, a message send “a op b” in Smalltalk-M, where op is an arithmetical

or logical operator (+, -, *, ... and, or, not, ...), is translated to
((Method_opname_1 ) a).opname(b)

in Green-M, where opname is the name in English of the operator, the same name
used in the methods of the wrapper classes. For example, a + b in Smalltalk-M
is translated to

((Method_plus_1 ) a).plus(b)

in Green-M.
The same mechanism is used with unary operators. Using this translation

scheme, the produced Green-M code is obviously type correct (for everything
has type Any). If a method X::m is called in Smalltalk-M at runtime because of
message send “x.m()”, then the same method will be called in the translated
Green-M code. After all, the runtime search for a method is the same in both
languages and the translation scheme does not change the class hierarchies.

This scheme only introduces types and type casts in the code to make it com-
patible to the Green-M type system. The semantics of the code is not changed
in any way.

Smalltalk-M to Java-M

Translation from dynamically-typed language to language supporting single
inheritance with interfaces.

This translation is almost equal to the translation from Smalltalk-M to
Green-M. We will only describe the differences between the two. A class A in
Smalltalk-M is translated to class A′ in Java-M. For each method m of A, create
in Java-M an interface Method_m_k as in the Smalltalk-M to Java-M translation.
Class A′ implements every interface Method_m_k corresponding to every method
of A, including those inherited. In this way, it is correct to translate

x.m(x1, x2, ..., xk)

to
((Method_m_k ) x).m(x1, x2, ..., xk)

At runtime, suppose x refer to an object of class X in Smalltalk-M. If this mes-
sage send is legal, class X or any of its superclasses (direct or indirect) declares a
method m. In Java-M, x will refer to an object of X′. Since X or any of its direct
or indirect superclasses defines a method m with k parameters, then X′ imple-
ments interface Method_m_k. Therefore the translated message send is correct in
Java-M too.

The rest of the translation is equal to the translation from Smalltalk-M to



Green-M.

Green-M to Java-M

Translation from language supporting single inheritance with subtyping based
in set inclusion of methods to language with single inheritance with interfaces.

For each method of each class in Green-M, create an interface in Java-M.
From a Green-M method

R m(T1 x1, T2 x2, ..., Tk xk)

interface Method_m_T1 T2 ... Tk R is created in Java-M. This interface de-
clares a single method whose signature is equal to m.

A class A in Green-M is translated to class A′ in Java-M. If A inherits from
class B, then A′ inherits from B′. Class A′ implements interfaces Method_m_...

corresponding to all of its methods, including the inherited ones.
Both Green-M and Java-M do not consider basic types as classes: the seman-

tics of basic types and values is the same in the two languages. Then expressions,
literals, and types related to basic types in Green-M are translated to themselves
in Java-M. That is, if a variable or return value of method has type B in Green-
M, B a basic type, it should have the same type in the translated Java-M code.
Every literal or expression in Green-M, such as 0, true, or 1 + 2 is translated
to itself in Java-M.

However, every variable in Green-M whose type is a non-basic type (a class)
will have type Any in the translated Java-M code. The same applies to return
value of methods. Class Any is created by the translator and has no methods.

A message send
x.m(e1, e2, ..., ek)

in Green-M is translated to
((Method_m_T1 T2 ... Tk R) x).m(e1, e2, ..., ek)

in Java-M, assuming that method m was declared as
R m(T1 x1, T2 x2, ..., Tk xk)

Does this scheme works ? Does it introduces any errors ? Let us see that.
This scheme produces a type correct Java-M code since all types but the basic
ones are converted to Any. The runtime search for a method that occurs after
a message is sent is equal in Java-M and Green-M. Therefore, the semantics of
the source and target codes are equal — message sends are not changed in the
translation, only type casts are introduced in Java-M.

There is another way to translate Green-M to Java-M. First, one can collect
all subtype information in all Green-M code. Whenever, in the Green-M code,
an object of type Y is used where an object of type X is expected, we register that
Y is a subtype of X. That is, there is an assignment (which includes parameter



passing) x = y in which the types of x and y are X and Y, respectively. Of course,
y could be an expression.

Now the translation is as follows: for each class A in the Green-M code, create
a class A′ and an interface IA′ in the Java-M code. Class A′ has all methods defined
in class A. If class A inherits from class B, then class A′ inherits from class B′.
And class A′ implements interface IA′, being therefore a subtype of it.

Interface IA′ declares all the public methods of A′, including the inherited
ones, and inherits from all the interfaces corresponding to supertypes of A in the
Green-M code (supertypes, not only the superclasses). That is, if { C, D, E } is
the set of supertypes of A, then interface IA′ inherits from interfaces IC′, ID′,
and IE′. This subtype relationships are those collected in the Green-M code.

A variable declared with type A in Green-M will have type IA′ in Java-M. The
creation of objects in Java-M uses the prime classes. For example, “new A()” in
the Green-M code is translated to “new A′()” in Java-M.

Subtype relationship in the Green-M code is not preserved in the translated
Java-M code. That is, there may be a class X supertype of Y in Green-M and IX′

is not supertype of IY′ in Java-M. But this will only happen if X is not effectively
used as a supertype of Y in the Green-M code. If it is, this subtype relationship
is registered by the translator and used to set the inheritance of the interfaces in
Java-M. For short, every effective subtype in Green-M is a subtype in Java-M.

If a message send x.m(...) calls at runtime method X::m in Green-M, which
method does it call in Java-M ? Every class in Green-M is translated to a similar
class in Java-M and inheritance relationships are preserved in the translation.
Since the runtime search for a method in one language is equal to the other, the
method called at runtime will be the same, X::m.

3 Conclusion

[Fig. 5] shows all translations described in the previous section. An arrow from
L to M means code in model L can be translated to code in model M by a scheme
described in this article. Since there is a path starting in any vertex and ending
in any other, code in any of the six models employed in this paper can be
translated to any other. This is a little bit surprising. Some models are clearly
more polymorphic than others and it seems very difficult to do some translations.
Let us study these.

1. The type system of Green offers more polymorphism than that of Java. In
Green, assignment “a = b” is legal if the declared type of b, say B, has at
least all the public methods of the declared type of a, say A. It does not
matter whether B inherits from A or not. In Java, all subtype relations have
to be explicitly declared by the programmer. We declare that Y is a subtype
of X if Y inherits from X (directly or indirectly), Y implements the interface



Figure 5: Graph showing translations between the language models

X (directly or indirectly), or Y is subtype of a subtype of X. It seems difficult
to go from a free type system as that of Green to a more strict like that
of Java. However, we can translate Green code to Java, albeit in a complex
way.

2. Multiple inheritance offers the possibility of a class inherit methods and in-
stance variables from several superclasses. It is not obvious how a convoluted
class hierarchy with numerous multiple inheritances can be translated to a
single inheritance hierarchy. The problem is that sister classes in the multi-
ple inheritance hierarchy can become subclass and superclass in the resulted
single inheritance hierarchy. This brings semantic and syntactic problems,
although problems that can be solved.

The objective of this article is clearly not to offer some new tools for compiler
designers. It would be too cumbersome to use our translation schemes for code
generation in real compilers. However, the first ideas about language to language
translations came about when building the Green Compiler [Guimarães 2007]
[Guimarães 2003]. We needed a fast way of translating Green and we chose to
translate it to Java. The compiler and its source code are freely available.

The main objective of this article is to improve the understanding of the
several models of object-oriented languages. By knowing the details of them and
how to translate one language to other, we can grasp all the subtlenesses of every
model. We conclude with comments on the languages and their translations:

– when translating Oberon-M to ClassMorph-M, a class and its superclasses
are flattened into a single class. The consequences of this are that message
sends to this in Oberon-M, which demand runtime searches, become mes-
sage sends to this in ClassMorph-M, which are linked to the method at
compile-time. In Oberon-M, there is a runtime search in message sends to



this, a time-consuming operation. In ClassMorph-M, there is none. This
is not for free. Every superclass method must be duplicated in every sub-
class because the method to be called in a message send to this is different
in every subclass. This translation scheme can be employed, with restric-
tions, from Oberon-M to Oberon-M. The restriction is that some subtypes
in the source code may not be subtypes in the target code. Therefore, we
can exchange code for speed in some occasions by changing message sends
to this as described by the translation scheme Oberon-M—ClassMorph-M.
Note that we can eliminate polymorphism in message sends to this, in this
case, but we cannot eliminate it in message sends to variables. It is impos-
sible to design an algorithm that finds exactly which methods will be called
at runtime by a given message send. This is uncomputable;

– basic types and values in Oberon-M, Java-M, Green-M, and ClassMorph-M
can be translated to basic types of Smalltalk without modifications. Every-
thing related to basic types that is allowed in the source languages is also
allowed in Smalltalk-M;

– Java-M and Green-M do not offer multiple inheritance. But since they sup-
port multiple subtyping, they cannot be easily translated to Oberon-M. The
translation is so difficult as that from C++-M to Oberon-M. The runtime
search for a method after a message send is the same in Java-M, Green-M,
and Oberon-M because all of these languages support only single inheritance.
However, this does not make it easy to preserve subtyping in the translation
because types are a compile-time feature;

– Oberon-M is clearly a subset of Java-M, Green-M, and C++-M. And ClassMorph-
M is a subset of Green-M. Java-M can be made a subset of Green-M by a)
changing every interface into a Green-M abstract class and b) removing any
implementations of an interface by a class. That is, given

class A implements I, J { ... }

in Java-M, just remove implements I, J;

– it is easy to translate every single inheritance language to Smalltalk-M be-
cause this language has the most liberal type system. And because the run-
time search for a method after a message send is the same in all single
inheritance languages;

– the translation schemes can be used as techniques to implement in a real lan-
guage some features it does not support. In fact, some or part of the schemes
can originate idioms, which are design patterns [Gamma et al. 1994] specific
to a language. The available compiler of Green, the real language, produces
Java as output. Everything is mapped to Java constructions, including the



exception handling system, which is completely object-oriented. This trans-
lation originates an idiom [Guimarães 2001] for exception treatment that
simulates in Java/C++ the object-oriented features of the exception system
of Green;

– Java-M can be translated to ClassMorph-M using the scheme Oberon-M to
ClassMorph-M. This is possible because the subtype definition of ClassMorph-
M encompasses that of Java-M, even though ClassMorph-M does not support
inheritance and Oberon-M does not support multiple subtyping;

– C++-M can be translated to the single inheritance language Oberon-M.
However, this is only possible by wholesale creation of methods to separate
sister classes in the flattened class hierarchy of Oberon-M. Of course, a lot
of optimizations can be made in the translation, which were not described;

– although both C++-M and Java-M support multiple subtyping, there is no
easy way to translate C++-M to Java-M. Multiple inheritance of C++-
M means multiple inheritance of code and multiple subtyping. Only the
last feature is supported by Java-M. This leads naturally to the translation
scheme exemplified by [Fig. 4], in which an interface hierarchy in Java-M is
created for every C++-M class hierarchy. However, this scheme also demands
the flattening of every C++-M class into a Java-M class without superclass;

– the translation from C++-M to Green-M shows the power of polymorphism
in Green-M: every C++-M class is flattened into a superclassless Green-M
class and that is all. No class/interface needs to be created because of the
Green-M subtype definition;

– the translation from Smalltalk-M to Green-M only demands changes in vari-
able/return value types and the introduction of some type casts. This shows
polymorphism in Green-M is not much less powerful than that of Smalltalk.
However, in the translated Green-M code all types are Any. It could not be
different since the runtime types of a variable in Smalltalk-M are not com-
putable. This scheme requires the creation of a class for each method/number
of parameters of the program. However, the translator does not need to ex-
amine all the program before starting the translation, as in the second al-
ternative of converting Green-M to Java-M. Classes like Method_m_k can be
created as the message sends are found by the translator. All the runtime
type checking of Smalltalk-M is translated to just a cast to a class, as in

((Method_m_k ) x).m(x1, x2, ..., xk)

– the translation from Green-M to Java-M shows how different are the subtype
definitions in the languages. Although both support only single inheritance,



the differences are profound in their support for polymorphism. In Java-M,
a subtype must be explicitly declared. But that is not always easy to do.
For example, if class B inherits from class A and we want it to be subtype of
class C, we cannot. To achieve this or something equivalent, it is necessary
to change several classes and the code that uses these classes, which may
be spread in the whole program. Probably it is necessary to create some
interfaces. It can be worse. If we do not have access to the source code of
classes A and B, it is impossible to make B subtype of C.

Green-M does not have these limitations. A class is automatically made
subtype of every other class that declares a subset of its public methods. The
contrast Green-M-automatic and Java-M-declared subtyping shows itself in
the two translations schemes presented. In the first, the translator declares
all variables in Java-M with type Any, except those variables that have a
basic type in Green-M. This radical approach transfer to runtime all type-
checking — but this is not unsafe since Green-M is statically-typed.

In the second scheme, the translator has to collect subtyping information in
the whole program before starting the translation. Hierarchies of interfaces
in Java-M mimics the real hierarchies of subtypes in the Green-M code. A
variable in Java-M has a type which is closely linked to its type in Green-M.
Then this scheme offers a better representation in Java-M of the Green-M
code. The price of this is the need of analyzing the whole program before the
translation to collect subtyping information. Subtyping, which is implicit in
Green-M, is made explicit in the generated Java-M code by this analyzing
step.
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