Some Translations between Object-Oriented Languages
Jost de Oliveira Guimaraes!

!Departamento de Computag, UFSCar
Sao Carlos-SP, Brazil

jose@dc.ufscar.br

Abstract. There are several aspects to consider when analyzing an object-
oriented language: support for single or multiple inheritance, dynamic or static
typing, definition of subtyping, and differences between subtyping and subclass-
ing. So different are the languages that apparently it is very or even extremely
difficult to translate code in one language to any other. This article shows that
this is not exactly true. We show how to translate code from and to several
simplified object-oriented languages. The translation schemes help us to better
understand object-oriented programming.

1. Introduction

This article explain how to do code translation between several abstract language mod-
els. Abstract models are used because it would be impossible to cope with all de-
tails of real languages. Five language models are used, which are based on C++
[Stroustrup 1991], Java [Gosling et al. 2007], Smalltalk [Goldberg and Robson 1983],
Green [Guimaies 2007] [Guimd&es 2006], and Oberon [Niklaus 1988].

These languages have different type systems (static/dynamic) and vary greatly in
their support for polymorphism, multiply inheritance, and other language features. By
providing translations between them, we hope to draw conclusions on: a) the strengths
and weaknesses of each language; b) the reasons there is more software reuse in some
languages than in others; and c) the real kinship among the languages.

Although abstract models are used instead of real languages, the translations allow
us to draw somes conclusions on the language themselves because the models capture the
essence of the real languages.

Throughout this article, we will use the Java syntax for all language models. How-
ever, the terminology we use mainly that of Smalltalk: %.m(0, 1) ”is a message
sendand ‘m(0, 1) ”isthe message sent to the object referred tx at runtime. Vari-
ables declared inside a class arstance variablesA method signaturés composed by
the method name, its parameter types, and the return value type.

The static or compile-time typef a variable is the type with which the variable
was declared. An expression has a compile-time type in a statically-typed language,
which is the type the compiler assigns to it. Whenever a dasserits from a class

B, we sayB is adirectsuperclass of. If Ais a direct or indirect superclass Bfthen we
say thatAis anindirectsuperclass of. In this articlesuperclassneandirect superclass.

The language models of this article share some features, described next. All ob-
jects are dynamically allocated and a variable whose type is a class is in fact a pointer. At
runtime, the variable will refer to an object. Except in the Smalltalk-based model, basic
values such ag¥, 0, true , and3.1415 are not objects and basic typest(, char ,
boolean ,float) are notclasses. All instance variables are private. A method is either
public or private. There are no static methods (C++ or Java) or class methods (Smalltalk).
Classes are not considered objects. A class cannot have two methods with the same name
but different number/types of parameters (method overloading).

In a statically-typed language, a claBss subtypeof a classA if an object ofB
can be used where an objectAfis expected without causing any runtime type errors.
That is, if the compile-time types of variablaa andbb are A andB, respectively, and
B is a subtype oA, then the assignmeafa = bb is type-correct. Considertgpeas a
classor a basic type unless stated otherwise. Note that assignments, which encompasses
parameter passing, are the only statements in which the subtype definition shows up.

The language models used in the translations are described below. Consider that
their syntax are equal except in those cases in which they must be obviously different.
Only the important details are described in this article, the rest being ignored.

[Oberon-M] Statically-typed language with single inheritance, subtyping equivalent to
subclassing. That is, clagis subtype of clas#\ if B inherits directly or indirectly

from A. This language model will be called Oberon-M. The name “Oberon” is only to
remember the model characteristics. No other Oberon [Niklaus 1988] feature than those
just cited is used. The same observation is valid to the other models.

[C++-M] Statically-typed language with multiple inheritance, subtyping equivalent to
subclassing. That is, clagis subtype of clas®\ if B inherits directly or indirectly
from A. Suppose clasB inherits from classeB andC. ThenD cannot inherit a method
mfrom both B and C unlessmis defined in a direct or indirect superclad®f both B
andC. ClassD then inherits the same method from two different paths. In this case, the
model demands th& declare anmethod. For short, there will never be an ambiguity in

a message send regarding which method to call.

A superclass methaa can be called usingstper.p(...) " or, in case of mul-
tiple superclasses, using the syntaxper(B).p(...) " in which B is the superclass
that declareg.

[Java-M] Statically-typed language with single inheritance and Java-like interfaces. An
interface is declared as a class but it only defines method signatures. An interface can
inherit from any number of interfaces. A class ¢gaplementiny number of interfaces. If

a classA implements interfack, thenA must define all methods declared in this interface.

In this language model, a type is a class or an interface. AByjsesubtype of a

typeAif: a) Ais interface and inherits fromA (in this caseB is an interface too) oB
implementsA (in this caseB is a class); bA is a class an® inherits fromA; or c) B is
subtype of a subtype &.

[Smalltalk-M] Dynamically-typed language with single inheritance. Variables are de-
clared without types. All assignments are valid. This is the only model in which basic
types €har , integer , boolean , float) are considered classes. Every basic value
such asA” , 13, false ,and3.14 is a dynamically-allocated object.

[Green-M] Statically-typed language with single inheritance and a type system in which
subtyping is independent from subclassing and equivalent to set inclusion of methods.

In this model, a type is different from a class. Every claasa type. The type
of a class is the set of signatures of its public methods. Remember a method signature is
composed by the method name, its parameter types, and the return value type. The type
of a clasB is asubtypeof the type of a clasé if B has at least all the method signatures
of A; thatis,type(A) C type(B) wheretype(X) is the type of clasX. For short,
we say that clasB is a subtype oA. Note that every subclass is a subtype but there may
be a subtype that is not a subclass — it only needs to define all the method signatures
found in its supertype.

2. Translation between Object-Oriented Languages

This section shows how to translate code from some language models to others. It is
important to note that almost all statements and declarations are translated to themselves
in the target code. This text only comments the parts that change in the translation.

Programs in Oberon-M are already programs in C++-M, Java-M, and Green-M.
Single inheritance is a special case of multiply inheritance and the subtype definition of
Oberon-M is equal or more restrictive that the other models.

Throughout this section we will use some definitions, which are given next.
H-(A) , whereA is a class, is the hierarchy &, the set of classes calculated as fol-
lows. Consider a graph G that has a vertex for each program class and there is an edge
(B, A) if classB inherits from clas®\. ThenH-(A) is the set of classes connected to
A, that is, the set of classes found in a depth-first search startiag at

methodsOf(A) is the set of public methods declared in clas$nherited ones

are not included.allMethodsOf(A) is the set of methods of clags including the
inherited onesallSubclassesOf(A) is the set of direct and indirect subclasses of
classA.

In the translations that follow, sometimes it is necessary to rename a method or
instance variable. Assume that the method or variable gets a new name that is not used
anywhere in the program. This observation is fundamental in all algorithms of this sec-

tion.
C++-M to Oberon-M

Translation from multiple inheritance to single inheritance in statically-typed lan-
guages. Some language features that appear in the C++-M code are translated to the
same code in Oberon-M: assignments, declaration of variables, declaration of instance
variables, message sends to variables, creation of objects, and treatment of basic types.

The general view of this translation scheme is as follows: a multiple inheritance
class hierarchy in C++-M is converted to a single inheritance hierarchy in Oberon-M. As
an example, the C++-M class hierarchy of [Fig. 1 (a)] is converted to the single inheritance
hierarchyD-C-B-A shown in [Fig. 1 (b)} Then new methods are created and message
sends are modified to prevent interferences between sister classBahki.

We are going to explain how to do the translation of a complete hierarchy at a
time. That is, the translation will be made not only for a cladsut for all classes of the
setHs(A) . The translation scheme is described by changes in the C++-M code in order
to create the Oberon-M code, just like a refactoring [Fowler et al. 1999].

First, the classes di-(A) are topologically ordered resulting B, ...,B,, B; in
which B; has no superclass aBg has no subclass. Create a single inheritance hierarchy
B,-...-B ,-B; in Oberon-M. The topological order preserves the subclass relationship
by definition: if B is a direct or indirect subclass &fin C++-M, thenB is direct or
indirect subclass oA in Oberon-M too. Therefore assignments need not to be changed in
the translation.

The translation would be overiifiethodsOf(B ;) N methodsOf(B ;) = (for
i # 7,1 <1 <mn. Thatis, there is not a public method in common among3helasses.
In this case, it would be impossible that, in C++-M,rh ” at runtime call a methodhof
a class and a method of a different class in Oberon-M.

However, there is a problem if tH& classes have a public method in common, as

in the example of [Fig. 1 (a)]. In this hierarchy, a public method declared inA, B,
andD, which is represented by putting a snalbesides the class name. Sirz@herits
p from A by two different paths, model C++-M demands tpabe overridden irD too.
ClassC defines a methonhthat has the following statement:

this.p();
In the C++-M model, at runtime this message send may call diffggemtethods: in
objects ofC, it will call methodp of A sinceC does not define p method (assume this).
In objects ofD, methodp of D will be called because the search fobegins at clas®.
For short, we will usd::p for methodp of classD.

LIn this figure, an arrow from a clagto A meansB inherits fromA.

This hierarchy is converted to the single inheritance hieramh@-B-A in
Oberon-M shown in [Fig. 1 (b)]. Then in objects Gfthe message serttis.p()
in C::m will call methodB::p at runtime. This is not the semantics of the original
C++-M code, which calls metho#l::p .

The problem is that clasB in the Oberon-M code was introduced betwe&en
andA. To correct this we have to change all message senttigso when the method
is public. Suppose there is a message séixlp(...) inside some method of a
classX. Change this tahis.X_p(...) , whereX_p is a name that does not appear
anywhere in the program. At translation time, in the C++-M code, do a search for method
p starting at clasX. The search continues in the superclas¥,&uperclass of superclass,
and so on till the method is found in clagswhich may beX, the first class searched. In
the Oberon-M code, rename the method foungrteate_ p and move it to the private
part. Create a public method callpdhat just callgrivate p . Create a method_p
equal top. This will be the p” method of class, the method that will not be disturbed by
the introduction of an alien superclass betw&eandY (as superclasB was introduced
betweenC andA bringing with it a metho@ that changed the semantics of the message
sendthis.p() in classC). See [Fig. 1 (b)] for an example whekeis C andY is A.
In the Figure, an arrow between methods means that a method just calls the other. For
example, the only statement of methddp is a call to methogbrivate_ p passing to
it all of its real arguments.

In the C++-M code, now go down in the subclasseX ahd do the same as above
for each methog found: when a methog is found in a direct or indirect subclags
of X, rename it toprivate_p and move it to the private part in the Oberon-M code.
Create a public method callgdthat just callrivate_p . Create a methoX_p equal
to p. When the algorithm goes up in tixehierarchy, only one class is modified. When
it goes down, all subclasses are changed. Note thptigagte p andX_p are just
method names that do not appear anywhere in the program and b) the search is made in
the C++-M hierarchy while the modifications are made in the Oberon-M code.

Consider the example of [Fig. 1 (b)] after the modification described above. In ob-
jects of D, the message setthiis.C_p() in methodC::m will call at runtime method
D::C_p , which just callsD::p . In objects ofC, the message sentis.C_p() in
methodC::m will call methodA::C_p , which just callsA::p . In both cases the se-
mantics of the original C++-M code is preserved.

There is another problem with the example of [Fig. 1 (a)]. Suppose cl#sses
and B define a method (not shown in the Figure). In the C++-M code, a statement
super.t() in classC will call method A:it at runtime. After the translation to
Oberon-M, the hierarchy becom&C-B-A and super.t() in C will call B::it
changing the original C++-M meaning of the message send. This problem is solved by
creating two new methods in cla8sprivate t andA _t. The original method\::t
Is renamed tqrivate_t and moved to the private part of the class. Methbdmd

private p

PB C
Fm————- 1 m ()
his. e Ll roTTTT-—-
I_E_li_p(_)_ |_[t_his_c_£)(_)__:
private p
DP t_p
C_p
C++-M Oberon-M

(a) (b)

Figure 1. Translation of a C++-M hierarchy to Oberon-M

AN

/IB’

\/

,/ID’

Figure 2. Interface hierarchy in Java-M that parallels that of the C++-M code

A _t are created in the public part. These methods just call mgihedte t passing
its real parameters to it. Note thativate t andA_t are just method names that do
not appear anywhere in the program. Now message sgvet.t() in Cis changed to
super.A_t() . Since there is no other method callgdt in the program, the correct
method will be called.

C++-M to Java-M

Translation from multiple inheritance language to language with single inheri-
tance with interfaces. There are two ways of doing this translation. The first and easy
way is to convert C++-M to Oberon-M. The resulting code will be in Java-M too. But
this destroys any multiple inheritance hierarchies found in the original code. The second
way is to further convert the Oberon-M code to a model called ClassMorph-M described
elsewhere [Guimaes 2008]. Model ClassMorph-M is essentially the Green-M model

but without inheritance.

After converting the C++-M code to Oberon-M and then ClassMorph-M, we cre-
ate a hierarchy of Java-M interfaces to mirror those of the original C++-M code. Let us
detail this.

For each program clagsin C++-M, the Java-M code has an interface and a class
. an interfacd A’ with all the public methods o4, including those inherited, and a class
A’ that implement$A ’. The classes of the Java-M code, suciNasre obtained by first
converting all classes of the C++-M code to Oberon-M and then converting all classes to
ClassMorph-M. Each of the resulting classes is a self-contained class without superclass
(ClassMorph-M does not support inheritance). Interfi#céis more easier to build: just
collect in a set all public methods of the C++-M clasdMakelA ' inherit from interface
IX"if Alinherits fromXin C++-M. This creates an interface hierarchy in Java-M that is
parallel to the class hierarchy of the C++-M code. MakémplementlA ' — this will
never lead to compile-time errors becadsdnas all the methods of the C++-M claBs
and all its direct and indirect superclasses. See an example in [Fig. 2]. A variable declared
with typeAin C++-M is declared with typ&A ' in Java-M. An expressionew A(...)
to create an object in C++-M is translatednew A(...) in Java-M.

If X is supertype ofY in C++-M, will X andIX’ be supertypes of’ andlY’
in Java-M, respectively ? Clearly is not a supertype of’. In fact, no class has any
superclass and therefore no class has any supertype that is a clagg.” Busupertype
of IY ’ for the interface hierarchy mirrors the class hierarchy of C++-M.

Consider an assignmert = y in C++-M in which the static types of andy
areX andY. ThenXs a direct or indirect superclass %f In the Java-M code, the types
of x andy will be IX’ andlY " with IX’ supertype ofY ' — the subtype relationships of
C++-M are preserved in Java-M. An object creatioeW A(...) " has static typéAin
C++-M and is translated tafew A/(...) " in Java-M, which has static typ&'. If Ais
a subtype oK in the C++-M codel|A ' is a subtype ofX " in Java-M. Sinc&\ is subtype
of IA’, Alis subtype ofX’ too. This means the translation of object creation to Java-M
does not introduce any type errors.

C++-M to Green-M

Translation from multiple inheritance language to a language supporting single
inheritance with subtyping based in set inclusion of methods.

The translation here is very similar to that from C++-M to Java-M. The first al-
ternative is to convert the C++-M code to Oberon-M. The resulting code is in Green-M
too. The second alternative is to flatten every class C++-M into a clas®\' without a
superclass in Green-M. This is made as in the translation from C++-M to Java-M. How-
ever, it is not necessary to create Green-M clag8éscorresponding to the interfaces

IA " of Java-M. These interfaces were created to preserve in Java-M the type hierarchy of
C++-M.

This is not necessary in Green-M: if classs supertype of clasgin C++-M, then
Y must inherit directly or indirectly fronX. Therefore,Y’ has at least the public method
signatures oK’ and, by the Green-M definition of subtyping,is a supertype of’.

Smalltalk-M to Green-M

Translation from dynamically-typed language to language supporting single in-
heritance with subtyping based on set inclusion of methods.

A classA in Smalltalk-M is translated to clags in Green-M. IfA inherits from
classB, thenA' inherits fromB'. Variables, which are typeless in Smalltalk-M, are de-
clared with typeAny in the Green-M code. The same applies to return value type of
methods. Consider thény is a class without methods and therefore supertype of every
other clasg. Therefore every variable or expression in the translated code hasiype

For each methodhof A in Smalltalk-M, create in the Green-M code an abstract
classMethod_m_k wherek is the number of parameters wf This class has just one
abstract method:

Any m(Any X, Any X 9, ..., Any X)

A method calx.m(x 1, X o, ..., X r) in Smalltalk-M is translated to
((Method_m_k) x).m(x L X 2y ey X 1)
in Green-M. Firsi is cast toMethod_m_k and then the message is sent.

ClassMethod_m_k with its single method is necessary to call methmadn
Green-M. Since the compile-time type »fis Any in Green-M, a methodless class, no
message can be sent directlyxtoNote that the real arguments of the message send,
have typeAny and the formal parameters of the methodf classMethod_m_k also
have typeAny.

Does this scheme also work with basic values such, 84, or3.14 ? Not yet,
since a message sead+ 1 in Smalltalk-M would be translated @ + 1 in Green-M
and this would be a sum of a variable of typay with 1. To solve this problem, cre-
ate in Green-M a wrapper class for each of the basic tyges char , boolean , and
float . The wrapper classes have nanhats , Char, Boolean , andFloat . Every
wrapper class stores a value of the corresponding type and has mgttodsd set
to retrieve and set the value. Every wrapper class has methods corresponding to the op-
erations the basic type supports. For example, dlasshas a method to add twat

2In the real language Green, there is a clasy that is inherited by any class that does not inherit from
any other

objects, Any plus (Any other)

For each wrapper class, there should be created classes of tHdétindd_m_k
as if the wrapper classes were in the Smalltalk-M code. Then there is a class
Method_plus_1 with methodAny plus(Any other)

We are going to make Green-M simulates the basic values and types of Smalltalk-
M. First, each basic value literal such as’A, or 3.14 of the Smalltalk-M code is
translated to an object creation in Green-M using the appropriate wrapper class. For
example, 1” in Smalltalk-M is translated torfew Int(1) ”in Green-M.

Second, a message serad bp b” in Smalltalk-M, whereop is an arithmetical
or logical operator<%, -, *, ...and, or , not , ...), is translated to
((Method_opname_1) a).opname(b)
in Green-M, wher@pname is the name in English of the operator, the same name used
in the methods of the wrapper classes. For exangple, b in Smalltalk-M is translated
to
((Method_plus_1) a).plus(b)
in Green-M.

The same mechanism is used with unary operators. Using this translation scheme,
the produced Green-M code is obviously type correct (for everything hastype If
a methodX::m is called in Smalltalk-M at runtime because of message semd(} ”,
then the same method will be called in the translated Green-M code. After all, the runtime
search for a method is the same in both languages and the translation scheme does not
change the class hierarchies.

This scheme only introduces types and type casts in the code to make it compatible
to the Green-M type system. The semantics of the code is not changed in any way.

Green-M to Java-M

Translation from language supporting single inheritance with subtyping based in
set inclusion of methods to language with single inheritance with interfaces.

For each method of each class in Green-M, create an interface in Java-M. From a
Green-M method
R m(Tl X1, Ta Xgy ooy, T k Xk)
interfaceMethod_m_T, T,_.... _T,___Ris created in Java-M. This interface declares a
single method whose signature is equatto

A classAin Green-M is translated to clagsin Java-M. IfAinherits from clas$,
thenA inherits fromB'. ClassA’' implements interfacelslethod_m_... corresponding
to all of its methods, including the inherited ones.

Both Green-M and Java-M do not consider basic types as classes: the semantics
of basic types and values is the same in the two languages. Then expressions, literals, and
types related to basic types in Green-M are translated to themselves in Java-M.

However, every variable in Green-M whose type is a non-basic type (a class) will
have typeAny in the translated Java-M code. The same applies to return value of methods.
ClassAny is created by the translator and has no methods.

A message send
x.m(e , €, ..., €)
in Green-M is translated to
((Method m_ T ; To.... Tx_R) X)m(e {, €3, ..., €)
in Java-M, assuming that methauvas declared as
R m(Tl X1, Ta Xgy ooy, T k Xk)

Does this scheme works ? Does it introduces any errors ? Let us see that. This
scheme produces a type correct Java-M code since all types but the basic ones are con-
verted toAny. The runtime search for a method that occurs after a message is sent is
equal in Java-M and Green-M. Therefore, the semantics of the source and target codes are
equal — message sends are not changed in the translation, only type casts are introduced
in Java-M.

There is another way to translate Green-M to Java-M. First, one can collect all
subtype information in all Green-M code. Whenever, in the Green-M code, an object of
typeY is used where an object of typéis expected, we register thdtis a subtype oK.

That is, there is an assignment (which includes parameter passiagy in which the
types ofx andy areX andY, respectively. Of coursg, could be an expression.

Now the translation is as follows: for each classn the Green-M code, create
a classA’ and an interfacéA ’ in the Java-M code. Clags has all methods defined in
classA. If classA inherits from clas$®, then clas#\ inherits from clas®'. And classA/
implements interfacéA ’, being therefore a subtype of it.

InterfacelA ' declares all the public methods Af, including the inherited ones,
and inherits from all the interfaces corresponding to supertypAsrothe Green-M code
(supertypes, not only the superclasses). That {sGfD, E } is the set of supertypes 8§
then interfaceA ' inherits from interfacefC’, ID’, andIE '. These subtype relationships
are those collected in the Green-M code.

A variable declared with typd in Green-M will have typdA’ in Java-M. The
creation of objects in Java-M uses the prime classes. For exanmae, A() ” in the
Green-M code is translated toéw A/() ”in Java-M.

Subtype relationship in the Green-M code is not preserved in the translated Java-M
code. That is, there may be a clagsupertype ofY in Green-M andX ' is not supertype
of IY " in Java-M. But this will only happen X is not effectively used as a supertypeYof

in the Green-M code. If it is, this subtype relationship is registered by the translator and
used to set the inheritance of the interfaces in Java-M. For short, every effective subtype
in Green-M is a subtype in Java-M.

If a message sendm(...) calls at runtime metho::m in Green-M, which
method does it call in Java-M ? Every class in Green-M is translated to a similar class in
Java-M and inheritance relationships are preserved in the translation. Since the runtime
search for a method is the same in both languages, the method called at runtime will be
the sameX::m .

3. Conclusion

Some of the models described in this article offer more support to software reuse than
others. For example, a methodi“that takes a formal parameter of cla&sn Oberon-
M/C++-M can receive as argument at runtime an object of ddamsany of its subclasses.

In Java-M, the argument tmcan be an object of clagsor its subclasses or, if this class

were an interface, implements directly or indirectly interfécédowever, a class has to
declare explicity that it implements an interface, just like a declaration of inheritance.

In Green-M, the argument can be an object of any class that declares the same methods
asA. This includesA and all of its subclasses plus possibly many more classes that do
not inherit fromA (but that aresubtypeof this class). The code ahcan be reused in

more occasions than in Oberon-M/C++-M/Java-M. It is not necessary to declare explicity
that a class isubtypeof A. In Smalltalk-M, methodnis declared without the formal
parameter type. Any object can be passed as a parameter. At runtime there will be no
error if the object has the methods corresponding to the messages sent to it. The object
can have fewer methods than those declared in édsscause of the runtime behavior

of the statements of methad If A declares a public methgaand the real argument is

an object which does not havepanethod, no error will occur if messages not sent to

the argument at runtime. Therefore objects of more classes than be passed as arguments
to the method, which can be reused in more occasions than in Green-M. We can conclude
that software reuse is higher in some models than in the others in the following order:
Smalltalk-M, Green-M, Java-M/Oberon-M/C++-M.

The C++-M model offers multiple inheritance, which allows a class inherit meth-
ods and instance variables from several superclasses. It is not obvious how a convoluted
class hierarchy with numerous multiple inheritances can be translated into a single inher-
itance hierarchy. The problem is that sister classes in the multiple inheritance hierarchy
can become subclass and superclass in the resulted single inheritance hierarchy. This
brings semantic and syntactic problems, although problems that can be solved.

Finally, all models but Smalltalk-M are statically-typed. It is not obvious how to
translate a dynamically-typed language to a statically-typed one. For all of the differences
cited above, it is a little bit surprising that code in some models can be translated into
others while still retaining some original code characteristics. In fact, every model can

be translated into any other. This is shown in an unabridged unpublished version of this
article [Guimages 2008].

The objective of this article is clearly not to offer some new tools for compiler
designers. It would be too cumbersome to use our translation schemes for code genera-
tion in real compilers. However, the first ideas about language to language translations
came about when building the Green Compiler [Guiaesr2007] [Guimares 2003]. We
needed a fast way of translating Green and we chose to translate it to Java.

The main objective of this article is to improve the understanding of the several
models of object-oriented languages. By knowing the details of them and how to translate
one language to other, we can grasp all the subtlenesses of every model. We conclude with
comments on the languages and their translations.

Java-M and Green-M do not offer multiple inheritance. But since they support
multiple subtyping, they cannot be easily translated to Oberon-M. The translation is so
difficult as that from C++-M to Oberon-M. The runtime search for a method after a mes-
sage send is the same in Java-M, Green-M, and Oberon-M because all of these languages
support only single inheritance. However, this does not make it easy to preserve subtyping
in the translation because types are a compile-time feature.

Oberon-M is clearly a subset of Java-M, Green-M, and C++-M. Java-M can be
made a subset of Green-M by a) changing every interface into a Green-M abstract class
and b) removing any implementations of an interface by a class. That is, given

class A implements I, J { ... }
in Java-M, just removenplements I, J ;

It is easy to translate every single inheritance model to Smalltalk-M because this
language model has the most liberal type system. And because the runtime search for a
method after a message send is the same in all single inheritance models. The translations
are not shown in this paper but can be found in [Guiear2008].

The translation schemes can be used as techniques to implement in a real lan-
guage some features it does not support. In fact, some or part of the schemes can origi-
nate idioms, which are Design Patterns [Gamma et al. 1994] specific to a language. The
available compiler of Green, the real language, produces Java as output. Everything is
mapped to Java constructions, including the exception handling system, which is com-
pletely object-oriented. This translation originates an idiom [Gu&ear2001] for excep-
tion treatment that simulates in Java/C++ the object-oriented features of the exception
system of Green.

Although both C++-M and Java-M support multiple subtyping, there is no easy
way to translate C++-M to Java-M. Multiple inheritance of C++-M means multiple inher-
itance of code and multiple subtyping. Only the last feature is supported by Java-M. This
leads naturally to the translation scheme exemplified by [Fig. 2], in which an interface
hierarchy in Java-M is created for every C++-M class hierarchy. However, this scheme

also demands the flattening of every C++-M class into a Java-M class without superclass.

The translation from C++-M to Green-M shows the power of polymorphism in
Green-M: every C++-M class is flattened into a Green-M class without superclass and that
is all. No class/interface needs to be created because of the Green-M subtype definition.

The translation from Smalltalk-M to Green-M only demands changes in vari-
able/return value types and the introduction of some type casts. This shows polymorphism
in Green-M is not much less powerful than that of Smalltalk. However, in the translated
Green-M code all types ar&ny. It could not be different since the runtime types of
a variable in Smalltalk-M are not computable. This scheme requires the creation of a
class for each method/number of parameters of the program. However, the translator
does not need to examine the entire program before starting the translation, as in the
second alternative of converting Green-M to Java-M. ClasseMaihod_m_k can be
created as the message sends are found by the translator. All the runtime type checking
of Smalltalk-M is translated to just a cast to a class, as in

((Method_m_k) x).m(x L X 2y ey X 1)

The translation from Green-M to Java-M shows how different are the subtype def-
initions in these languages. Although both support only single inheritance, the differences
are profound in their support for polymorphism. In Java-M, a subtype must be explicitly
declared. But that is not always easy to do. For example, if @askerits from clas
and we want it to be subtype of claGswe cannot. To achieve this or something equiva-
lent, it is necessary to change several classes and the code that uses these classes, which
may be spread in the whole program. It would probably be necessary to create some in-
terfaces. It can be worse. If we do not have access to the source code of AlassH;
it is impossible to mak®& subtype ofC.

Green-M does not have these limitations. A class is automatically made subtype
of every other class that declares a subset of its public methods. The contrast Green-M-
automatic and Java-M-declared subtyping shows itself in the two translations schemes
presented. In the first, the translator declares all variables in Java-M withAtype
except those variables that have a basic type in Green-M. This radical approach transfer
to runtime all type-checking — but this is not unsafe since Green-M is statically-typed
and the translation guarantees that a method will be found at runtime.

In the second scheme, the translator has to collect subtyping information in the
whole program before starting the translation. Hierarchies of interfaces in Java-M mim-
ics the real hierarchies of subtypes in the Green-M code. A variable in Java-M has a type
which is closely linked to its type in Green-M. Then this scheme offers a better repre-
sentation in Java-M of the Green-M code. The price of this is the need of analyzing the
whole program before the translation to collect subtyping information. Subtyping, which
is implicit in Green-M, is made explicit in the generated Java-M code by this analyzing
step.

References

America, P; Linden, F. V. D. (1991). “A parallel Object-Oriented Language with Inheri-
tance and Subtyping”; Proc. of Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), ACM, New York, 161-168.

Fowler, M.; Beck k.; Brant, Opdyke, W.; Roberts, D. (1999). “Refactoring: Improving
the Design of Existing Code”; Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). “Design Patterns: Elements of
Reusable Object-Oriented Software”; Addison-Wesley, Reading, MA.

Goldberg, A., Robson, D. (1983). “Smalltalk-80: The Language and its Implementation”;
Addison-Wesley, Reading, MA.

Gosling, J., Joy, B., Steele, G., Bracha, G. (2005). “The Java Language Specification”;
third edition, Prentice Hall PTR. Available at
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf.

Guimages, J. (2001). “An Idiom for Exception Treatment in C++ and Java”; Proc. V
Simpbsio Brasileiro de Linguagens de Progradag¢Brazilian Symposium of Pro-
gramming Languages).

Guimag@es, J. (2008). “On Translation between Object-Oriented Languages”; Available
at
http://www.dc.ufscar.bf/jose/green/green.htm.

Guimaides, J. (2007) “The Green language”; Available at
http://www.dc.ufscar.bf/jose/green/green.htm.

Guimages, J. (2006). “The Green language”; Computer Languages, Systems, & Struc-
tures, 32, 4, 203-215.

Guimaides, J. (2003). “Experiences in Building a Compiler for an Object-Oriented Lan-
guage”; SIGPLAN Notices, 38, 4, 25-33.

Wirth, N. (1988). “The Programming Language Oberon”; Software, Practice & Experi-
ence 18, 7, 671-690.

Stroustrup, B. (1991). “The C++ Programming Language”; third edition, Addison Wesley,
Reading, MA.

