
Some Translations between Object-Oriented Languages

Jośe de Oliveira Guimarães1

1Departamento de Computação, UFSCar
São Carlos-SP, Brazil

jose@dc.ufscar.br

Abstract. There are several aspects to consider when analyzing an object-
oriented language: support for single or multiple inheritance, dynamic or static
typing, definition of subtyping, and differences between subtyping and subclass-
ing. So different are the languages that apparently it is very or even extremely
difficult to translate code in one language to any other. This article shows that
this is not exactly true. We show how to translate code from and to several
simplified object-oriented languages. The translation schemes help us to better
understand object-oriented programming.

1. Introduction

This article explain how to do code translation between several abstract language mod-
els. Abstract models are used because it would be impossible to cope with all de-
tails of real languages. Five language models are used, which are based on C++
[Stroustrup 1991], Java [Gosling et al. 2007], Smalltalk [Goldberg and Robson 1983],
Green [Guimar̃aes 2007] [Guimarães 2006], and Oberon [Niklaus 1988].

These languages have different type systems (static/dynamic) and vary greatly in
their support for polymorphism, multiply inheritance, and other language features. By
providing translations between them, we hope to draw conclusions on: a) the strengths
and weaknesses of each language; b) the reasons there is more software reuse in some
languages than in others; and c) the real kinship among the languages.

Although abstract models are used instead of real languages, the translations allow
us to draw somes conclusions on the language themselves because the models capture the
essence of the real languages.

Throughout this article, we will use the Java syntax for all language models. How-
ever, the terminology we use ismainly that of Smalltalk: “x.m(0, 1) ” is a message
sendand “m(0, 1) ” is the message sent to the object referred to byx at runtime. Vari-
ables declared inside a class areinstance variables. A method signatureis composed by
the method name, its parameter types, and the return value type.

The static or compile-time typeof a variable is the type with which the variable
was declared. An expression has a compile-time type in a statically-typed language,
which is the type the compiler assigns to it. Whenever a classC inherits from a class



B, we sayB is adirectsuperclass ofC. If A is a direct or indirect superclass ofB, then we
say thatA is anindirectsuperclass ofC. In this articlesuperclassmeansdirectsuperclass.

The language models of this article share some features, described next. All ob-
jects are dynamically allocated and a variable whose type is a class is in fact a pointer. At
runtime, the variable will refer to an object. Except in the Smalltalk-based model, basic
values such as′A′, 0, true , and3.1415 are not objects and basic types (int , char ,
boolean , float ) are not classes. All instance variables are private. A method is either
public or private. There are no static methods (C++ or Java) or class methods (Smalltalk).
Classes are not considered objects. A class cannot have two methods with the same name
but different number/types of parameters (method overloading).

In a statically-typed language, a classB is subtypeof a classA if an object ofB
can be used where an object ofA is expected without causing any runtime type errors.
That is, if the compile-time types of variablesaa andbb areA andB, respectively, and
B is a subtype ofA, then the assignmentaa = bb is type-correct. Consider atypeas a
classor a basic type unless stated otherwise. Note that assignments, which encompasses
parameter passing, are the only statements in which the subtype definition shows up.

The language models used in the translations are described below. Consider that
their syntax are equal except in those cases in which they must be obviously different.
Only the important details are described in this article, the rest being ignored.

[Oberon-M] Statically-typed language with single inheritance, subtyping equivalent to
subclassing. That is, classB is subtype of classA if B inherits directly or indirectly
from A. This language model will be called Oberon-M. The name “Oberon” is only to
remember the model characteristics. No other Oberon [Niklaus 1988] feature than those
just cited is used. The same observation is valid to the other models.

[C++-M] Statically-typed language with multiple inheritance, subtyping equivalent to
subclassing. That is, classB is subtype of classA if B inherits directly or indirectly
from A. Suppose classD inherits from classesB andC. ThenD cannot inherit a method
m from bothB andC unlessm is defined in a direct or indirect superclassA of both B
andC. ClassD then inherits the same method from two different paths. In this case, the
model demands thatDdeclare ammethod. For short, there will never be an ambiguity in
a message send regarding which method to call.

A superclass methodp can be called using “super.p(...) ” or, in case of mul-
tiple superclasses, using the syntax “super(B).p(...) ” in which B is the superclass
that declaresp.

[Java-M] Statically-typed language with single inheritance and Java-like interfaces. An
interface is declared as a class but it only defines method signatures. An interface can
inherit from any number of interfaces. A class canimplementany number of interfaces. If
a classA implements interfaceI , thenA must define all methods declared in this interface.

In this language model, a type is a class or an interface. A typeB is subtype of a



typeA if: a) A is interface andB inherits fromA (in this case,B is an interface too) orB
implementsA (in this case,B is a class); b)A is a class andB inherits fromA; or c) B is
subtype of a subtype ofA.

[Smalltalk-M] Dynamically-typed language with single inheritance. Variables are de-
clared without types. All assignments are valid. This is the only model in which basic
types (char , integer , boolean , float ) are considered classes. Every basic value
such aśA´ , 13 , false , and3.14 is a dynamically-allocated object.

[Green-M] Statically-typed language with single inheritance and a type system in which
subtyping is independent from subclassing and equivalent to set inclusion of methods.

In this model, a type is different from a class. Every classhasa type. The type
of a class is the set of signatures of its public methods. Remember a method signature is
composed by the method name, its parameter types, and the return value type. The type
of a classB is asubtypeof the type of a classA if B has at least all the method signatures
of A; that is,type(A) ⊂ type(B) wheretype(X) is the type of classX. For short,
we say that classB is a subtype ofA. Note that every subclass is a subtype but there may
be a subtype that is not a subclass — it only needs to define all the method signatures
found in its supertype.

2. Translation between Object-Oriented Languages

This section shows how to translate code from some language models to others. It is
important to note that almost all statements and declarations are translated to themselves
in the target code. This text only comments the parts that change in the translation.

Programs in Oberon-M are already programs in C++-M, Java-M, and Green-M.
Single inheritance is a special case of multiply inheritance and the subtype definition of
Oberon-M is equal or more restrictive that the other models.

Throughout this section we will use some definitions, which are given next.
HC(A) , whereA is a class, is the hierarchy ofA, the set of classes calculated as fol-
lows. Consider a graph G that has a vertex for each program class and there is an edge
(B, A) if classB inherits from classA. ThenHC(A) is the set of classes connected to
A; that is, the set of classes found in a depth-first search starting atA.

methodsOf(A) is the set of public methods declared in classA. Inherited ones
are not included.allMethodsOf(A) is the set of methods of classA, including the
inherited ones.allSubclassesOf(A) is the set of direct and indirect subclasses of
classA.

In the translations that follow, sometimes it is necessary to rename a method or
instance variable. Assume that the method or variable gets a new name that is not used
anywhere in the program. This observation is fundamental in all algorithms of this sec-



tion.

C++-M to Oberon-M

Translation from multiple inheritance to single inheritance in statically-typed lan-
guages. Some language features that appear in the C++-M code are translated to the
same code in Oberon-M: assignments, declaration of variables, declaration of instance
variables, message sends to variables, creation of objects, and treatment of basic types.

The general view of this translation scheme is as follows: a multiple inheritance
class hierarchy in C++-M is converted to a single inheritance hierarchy in Oberon-M. As
an example, the C++-M class hierarchy of [Fig. 1 (a)] is converted to the single inheritance
hierarchyD-C-B-A shown in [Fig. 1 (b)].1 Then new methods are created and message
sends are modified to prevent interferences between sister classes likeB andC.

We are going to explain how to do the translation of a complete hierarchy at a
time. That is, the translation will be made not only for a classA but for all classes of the
setHC(A) . The translation scheme is described by changes in the C++-M code in order
to create the Oberon-M code, just like a refactoring [Fowler et al. 1999].

First, the classes ofHC(A) are topologically ordered resulting inBn, ...,B2, B1 in
which B1 has no superclass andBn has no subclass. Create a single inheritance hierarchy
Bn-...-B 2-B 1 in Oberon-M. The topological order preserves the subclass relationship
by definition: if B is a direct or indirect subclass ofA in C++-M, thenB is direct or
indirect subclass ofA in Oberon-M too. Therefore assignments need not to be changed in
the translation.

The translation would be over ifmethodsOf(B i) ∩ methodsOf(B j) = ∅ for
i 6= j, 1 ≤ i ≤ n. That is, there is not a public method in common among theBi classes.
In this case, it would be impossible that, in C++-M, “x.m ” at runtime call a methodmof
a class and a method of a different class in Oberon-M.

However, there is a problem if theBi classes have a public method in common, as
in the example of [Fig. 1 (a)]. In this hierarchy, a public methodp is declared inA, B,
andD, which is represented by putting a smallp besides the class name. SinceD inherits
p from A by two different paths, model C++-M demands thatp be overridden inD too.
ClassCdefines a methodmthat has the following statement:

this.p();
In the C++-M model, at runtime this message send may call differentp methods: in
objects ofC, it will call methodp of A sinceCdoes not define ap method (assume this).
In objects ofD, methodp of D will be called because the search forp begins at classD.
For short, we will useD::p for methodp of classD.

1In this figure, an arrow from a classB to A meansB inherits fromA.



This hierarchy is converted to the single inheritance hierarchyD-C-B-A in
Oberon-M shown in [Fig. 1 (b)]. Then in objects ofC the message sendthis.p()
in C::m will call method B::p at runtime. This is not the semantics of the original
C++-M code, which calls methodA::p .

The problem is that classB in the Oberon-M code was introduced betweenC
andA. To correct this we have to change all message sends tothis when the method
is public. Suppose there is a message sendthis.p(...) inside some method of a
classX. Change this tothis.X_p(...) , whereX_p is a name that does not appear
anywhere in the program. At translation time, in the C++-M code, do a search for method
p starting at classX. The search continues in the superclass ofX, superclass of superclass,
and so on till the method is found in classY, which may beX, the first class searched. In
the Oberon-M code, rename the method found toprivate_p and move it to the private
part. Create a public method calledp that just callsprivate_p . Create a methodX_p
equal top. This will be the “p” method of classX, the method that will not be disturbed by
the introduction of an alien superclass betweenX andY (as superclassB was introduced
betweenC andA bringing with it a methodp that changed the semantics of the message
sendthis.p() in classC). See [Fig. 1 (b)] for an example whereX is C andY is A.
In the Figure, an arrow between methods means that a method just calls the other. For
example, the only statement of methodA::p is a call to methodprivate_p passing to
it all of its real arguments.

In the C++-M code, now go down in the subclasses ofX and do the same as above
for each methodp found: when a methodp is found in a direct or indirect subclassZ
of X, rename it toprivate_p and move it to the private part in the Oberon-M code.
Create a public method calledp that just callsprivate_p . Create a methodX_p equal
to p. When the algorithm goes up in theX hierarchy, only one class is modified. When
it goes down, all subclasses are changed. Note that a)private_p andX_p are just
method names that do not appear anywhere in the program and b) the search is made in
the C++-M hierarchy while the modifications are made in the Oberon-M code.

Consider the example of [Fig. 1 (b)] after the modification described above. In ob-
jects ofD, the message sendthis.C_p() in methodC::m will call at runtime method
D::C_p , which just callsD::p . In objects ofC, the message sendthis.C_p() in
methodC::m will call methodA::C_p , which just callsA::p . In both cases the se-
mantics of the original C++-M code is preserved.

There is another problem with the example of [Fig. 1 (a)]. Suppose classesA
and B define a methodt (not shown in the Figure). In the C++-M code, a statement
super.t() in classC will call method A::t at runtime. After the translation to
Oberon-M, the hierarchy becomesD-C-B-A and super.t() in C will call B::t ,
changing the original C++-M meaning of the message send. This problem is solved by
creating two new methods in classA: private_t andA_t . The original methodA::t
is renamed toprivate_t and moved to the private part of the class. Methodst and



Figure 1. Translation of a C++-M hierarchy to Oberon-M

Figure 2. Interface hierarchy in Java-M that parallels that of the C++-M code

A_t are created in the public part. These methods just call methodprivate_t passing
its real parameters to it. Note thatprivate_t andA_t are just method names that do
not appear anywhere in the program. Now message sendsuper.t() in C is changed to
super.A_t() . Since there is no other method calledA_t in the program, the correct
method will be called.

C++-M to Java-M

Translation from multiple inheritance language to language with single inheri-
tance with interfaces. There are two ways of doing this translation. The first and easy
way is to convert C++-M to Oberon-M. The resulting code will be in Java-M too. But
this destroys any multiple inheritance hierarchies found in the original code. The second
way is to further convert the Oberon-M code to a model called ClassMorph-M described
elsewhere [Guimarães 2008]. Model ClassMorph-M is essentially the Green-M model



but without inheritance.

After converting the C++-M code to Oberon-M and then ClassMorph-M, we cre-
ate a hierarchy of Java-M interfaces to mirror those of the original C++-M code. Let us
detail this.

For each program classA in C++-M, the Java-M code has an interface and a class
: an interfaceIA ′ with all the public methods ofA, including those inherited, and a class
A′ that implementsIA ′. The classes of the Java-M code, such asA′, are obtained by first
converting all classes of the C++-M code to Oberon-M and then converting all classes to
ClassMorph-M. Each of the resulting classes is a self-contained class without superclass
(ClassMorph-M does not support inheritance). InterfaceIA ′ is more easier to build: just
collect in a set all public methods of the C++-M classA. MakeIA ′ inherit from interface
IX ′ if A inherits fromX in C++-M. This creates an interface hierarchy in Java-M that is
parallel to the class hierarchy of the C++-M code. MakeA′ implementIA ′ — this will
never lead to compile-time errors becauseA′ has all the methods of the C++-M classA
and all its direct and indirect superclasses. See an example in [Fig. 2]. A variable declared
with typeA in C++-M is declared with typeIA ′ in Java-M. An expressionnew A(...)
to create an object in C++-M is translated tonew A′(...) in Java-M.

If X is supertype ofY in C++-M, will X′ and IX ′ be supertypes ofY′ and IY ′

in Java-M, respectively ? ClearlyX′ is not a supertype ofY′. In fact, no class has any
superclass and therefore no class has any supertype that is a class. ButIX ′ is supertype
of IY ′ for the interface hierarchy mirrors the class hierarchy of C++-M.

Consider an assignmentx = y in C++-M in which the static types ofx andy
areX andY. ThenX is a direct or indirect superclass ofY. In the Java-M code, the types
of x andy will be IX ′ andIY ′ with IX ′ supertype ofIY ′ — the subtype relationships of
C++-M are preserved in Java-M. An object creation “new A(...) ” has static typeA in
C++-M and is translated to “new A′(...) ” in Java-M, which has static typeA′. If A is
a subtype ofX in the C++-M code,IA ′ is a subtype ofIX ′ in Java-M. SinceA′ is subtype
of IA ′, A′ is subtype ofIX ′ too. This means the translation of object creation to Java-M
does not introduce any type errors.

C++-M to Green-M

Translation from multiple inheritance language to a language supporting single
inheritance with subtyping based in set inclusion of methods.

The translation here is very similar to that from C++-M to Java-M. The first al-
ternative is to convert the C++-M code to Oberon-M. The resulting code is in Green-M
too. The second alternative is to flatten every classA of C++-M into a classA′ without a
superclass in Green-M. This is made as in the translation from C++-M to Java-M. How-
ever, it is not necessary to create Green-M classesIA ′ corresponding to the interfaces



IA ′ of Java-M. These interfaces were created to preserve in Java-M the type hierarchy of
C++-M.

This is not necessary in Green-M: if classX is supertype of classY in C++-M, then
Y must inherit directly or indirectly fromX. Therefore,Y′ has at least the public method
signatures ofX′ and, by the Green-M definition of subtyping,X′ is a supertype ofY′.

Smalltalk-M to Green-M

Translation from dynamically-typed language to language supporting single in-
heritance with subtyping based on set inclusion of methods.

A classA in Smalltalk-M is translated to classA′ in Green-M. IfA inherits from
classB, thenA′ inherits fromB′. Variables, which are typeless in Smalltalk-M, are de-
clared with typeAny in the Green-M code. The same applies to return value type of
methods. Consider thatAny is a class without methods and therefore supertype of every
other class.2 Therefore every variable or expression in the translated code has typeAny.

For each methodmof A in Smalltalk-M, create in the Green-M code an abstract
classMethod_m_k wherek is the number of parameters ofm. This class has just one
abstract method:

Any m(Any x 1, Any x 2, ..., Any x k)

A method callx.m(x 1, x 2, ..., x k) in Smalltalk-M is translated to
((Method_m_k ) x).m(x 1, x 2, ..., x k)

in Green-M. Firstx is cast toMethod_m_k and then the message is sent.

ClassMethod_m_k with its single method is necessary to call methodm in
Green-M. Since the compile-time type ofx is Any in Green-M, a methodless class, no
message can be sent directly tox . Note that the real arguments of the message send,x i,
have typeAny and the formal parameters of the methodmof classMethod_m_k also
have typeAny.

Does this scheme also work with basic values such as1, ′A′, or 3.14 ? Not yet,
since a message senda + 1 in Smalltalk-M would be translated toa + 1 in Green-M
and this would be a sum of a variable of typeAny with 1. To solve this problem, cre-
ate in Green-M a wrapper class for each of the basic typesint , char , boolean , and
float . The wrapper classes have namesInt , Char , Boolean , andFloat . Every
wrapper class stores a value of the corresponding type and has methodsget andset
to retrieve and set the value. Every wrapper class has methods corresponding to the op-
erations the basic type supports. For example, classInt has a method to add twoInt

2In the real language Green, there is a classAny that is inherited by any class that does not inherit from
any other



objects,Any plus (Any other ) .

For each wrapper class, there should be created classes of the kindMethod_m_k
as if the wrapper classes were in the Smalltalk-M code. Then there is a class
Method_plus_1 with methodAny plus(Any other) .

We are going to make Green-M simulates the basic values and types of Smalltalk-
M. First, each basic value literal such as1, ′A′, or 3.14 of the Smalltalk-M code is
translated to an object creation in Green-M using the appropriate wrapper class. For
example, “1” in Smalltalk-M is translated to “new Int(1) ” in Green-M.

Second, a message send “a op b ” in Smalltalk-M, whereop is an arithmetical
or logical operator (+, - , * , ... and , or , not , ...), is translated to

((Method_opname_1 ) a).opname(b)
in Green-M, whereopname is the name in English of the operator, the same name used
in the methods of the wrapper classes. For example,a + b in Smalltalk-M is translated
to

((Method_plus_1 ) a).plus(b)
in Green-M.

The same mechanism is used with unary operators. Using this translation scheme,
the produced Green-M code is obviously type correct (for everything has typeAny). If
a methodX::m is called in Smalltalk-M at runtime because of message send “x.m() ”,
then the same method will be called in the translated Green-M code. After all, the runtime
search for a method is the same in both languages and the translation scheme does not
change the class hierarchies.

This scheme only introduces types and type casts in the code to make it compatible
to the Green-M type system. The semantics of the code is not changed in any way.

Green-M to Java-M

Translation from language supporting single inheritance with subtyping based in
set inclusion of methods to language with single inheritance with interfaces.

For each method of each class in Green-M, create an interface in Java-M. From a
Green-M method

R m(T1 x1, T 2 x2, ..., T k xk)
interfaceMethod_m_T 1 T2 ... Tk R is created in Java-M. This interface declares a
single method whose signature is equal tom.

A classA in Green-M is translated to classA′ in Java-M. IfA inherits from classB,
thenA′ inherits fromB′. ClassA′ implements interfacesMethod_m_... corresponding
to all of its methods, including the inherited ones.



Both Green-M and Java-M do not consider basic types as classes: the semantics
of basic types and values is the same in the two languages. Then expressions, literals, and
types related to basic types in Green-M are translated to themselves in Java-M.

However, every variable in Green-M whose type is a non-basic type (a class) will
have typeAny in the translated Java-M code. The same applies to return value of methods.
ClassAny is created by the translator and has no methods.

A message send
x.m(e 1, e 2, ..., e k)

in Green-M is translated to
((Method_m_T 1 T2 ... Tk R) x).m(e 1, e 2, ..., e k)

in Java-M, assuming that methodmwas declared as
R m(T1 x1, T 2 x2, ..., T k xk)

Does this scheme works ? Does it introduces any errors ? Let us see that. This
scheme produces a type correct Java-M code since all types but the basic ones are con-
verted toAny. The runtime search for a method that occurs after a message is sent is
equal in Java-M and Green-M. Therefore, the semantics of the source and target codes are
equal — message sends are not changed in the translation, only type casts are introduced
in Java-M.

There is another way to translate Green-M to Java-M. First, one can collect all
subtype information in all Green-M code. Whenever, in the Green-M code, an object of
typeY is used where an object of typeX is expected, we register thatY is a subtype ofX.
That is, there is an assignment (which includes parameter passing)x = y in which the
types ofx andy areX andY, respectively. Of course,y could be an expression.

Now the translation is as follows: for each classA in the Green-M code, create
a classA′ and an interfaceIA ′ in the Java-M code. ClassA′ has all methods defined in
classA. If classA inherits from classB, then classA′ inherits from classB′. And classA′

implements interfaceIA ′, being therefore a subtype of it.

InterfaceIA ′ declares all the public methods ofA′, including the inherited ones,
and inherits from all the interfaces corresponding to supertypes ofA in the Green-M code
(supertypes, not only the superclasses). That is, if{ C, D, E } is the set of supertypes ofA,
then interfaceIA ′ inherits from interfacesIC ′, ID ′, andIE ′. These subtype relationships
are those collected in the Green-M code.

A variable declared with typeA in Green-M will have typeIA ′ in Java-M. The
creation of objects in Java-M uses the prime classes. For example, “new A() ” in the
Green-M code is translated to “new A′() ” in Java-M.

Subtype relationship in the Green-M code is not preserved in the translated Java-M
code. That is, there may be a classX supertype ofY in Green-M andIX ′ is not supertype
of IY ′ in Java-M. But this will only happen ifX is not effectively used as a supertype ofY



in the Green-M code. If it is, this subtype relationship is registered by the translator and
used to set the inheritance of the interfaces in Java-M. For short, every effective subtype
in Green-M is a subtype in Java-M.

If a message sendx.m(...) calls at runtime methodX::m in Green-M, which
method does it call in Java-M ? Every class in Green-M is translated to a similar class in
Java-M and inheritance relationships are preserved in the translation. Since the runtime
search for a method is the same in both languages, the method called at runtime will be
the same,X::m .

3. Conclusion

Some of the models described in this article offer more support to software reuse than
others. For example, a method “m” that takes a formal parameter of classA in Oberon-
M/C++-M can receive as argument at runtime an object of classA or any of its subclasses.
In Java-M, the argument tomcan be an object of classA or its subclasses or, if this class
were an interface, implements directly or indirectly interfaceA. However, a class has to
declare explicity that it implements an interface, just like a declaration of inheritance.
In Green-M, the argument can be an object of any class that declares the same methods
asA. This includesA and all of its subclasses plus possibly many more classes that do
not inherit fromA (but that aresubtypesof this class). The code ofmcan be reused in
more occasions than in Oberon-M/C++-M/Java-M. It is not necessary to declare explicity
that a class issubtypeof A. In Smalltalk-M, methodm is declared without the formal
parameter type. Any object can be passed as a parameter. At runtime there will be no
error if the object has the methods corresponding to the messages sent to it. The object
can have fewer methods than those declared in classA because of the runtime behavior
of the statements of methodm. If A declares a public methodp and the real argument is
an object which does not have ap method, no error will occur if messagep is not sent to
the argument at runtime. Therefore objects of more classes than be passed as arguments
to the method, which can be reused in more occasions than in Green-M. We can conclude
that software reuse is higher in some models than in the others in the following order:
Smalltalk-M, Green-M, Java-M/Oberon-M/C++-M.

The C++-M model offers multiple inheritance, which allows a class inherit meth-
ods and instance variables from several superclasses. It is not obvious how a convoluted
class hierarchy with numerous multiple inheritances can be translated into a single inher-
itance hierarchy. The problem is that sister classes in the multiple inheritance hierarchy
can become subclass and superclass in the resulted single inheritance hierarchy. This
brings semantic and syntactic problems, although problems that can be solved.

Finally, all models but Smalltalk-M are statically-typed. It is not obvious how to
translate a dynamically-typed language to a statically-typed one. For all of the differences
cited above, it is a little bit surprising that code in some models can be translated into
others while still retaining some original code characteristics. In fact, every model can



be translated into any other. This is shown in an unabridged unpublished version of this
article [Guimar̃aes 2008].

The objective of this article is clearly not to offer some new tools for compiler
designers. It would be too cumbersome to use our translation schemes for code genera-
tion in real compilers. However, the first ideas about language to language translations
came about when building the Green Compiler [Guimarães 2007] [Guimarães 2003]. We
needed a fast way of translating Green and we chose to translate it to Java.

The main objective of this article is to improve the understanding of the several
models of object-oriented languages. By knowing the details of them and how to translate
one language to other, we can grasp all the subtlenesses of every model. We conclude with
comments on the languages and their translations.

Java-M and Green-M do not offer multiple inheritance. But since they support
multiple subtyping, they cannot be easily translated to Oberon-M. The translation is so
difficult as that from C++-M to Oberon-M. The runtime search for a method after a mes-
sage send is the same in Java-M, Green-M, and Oberon-M because all of these languages
support only single inheritance. However, this does not make it easy to preserve subtyping
in the translation because types are a compile-time feature.

Oberon-M is clearly a subset of Java-M, Green-M, and C++-M. Java-M can be
made a subset of Green-M by a) changing every interface into a Green-M abstract class
and b) removing any implementations of an interface by a class. That is, given

class A implements I, J { ... }
in Java-M, just removeimplements I, J ;

It is easy to translate every single inheritance model to Smalltalk-M because this
language model has the most liberal type system. And because the runtime search for a
method after a message send is the same in all single inheritance models. The translations
are not shown in this paper but can be found in [Guimarães 2008].

The translation schemes can be used as techniques to implement in a real lan-
guage some features it does not support. In fact, some or part of the schemes can origi-
nate idioms, which are Design Patterns [Gamma et al. 1994] specific to a language. The
available compiler of Green, the real language, produces Java as output. Everything is
mapped to Java constructions, including the exception handling system, which is com-
pletely object-oriented. This translation originates an idiom [Guimarães 2001] for excep-
tion treatment that simulates in Java/C++ the object-oriented features of the exception
system of Green.

Although both C++-M and Java-M support multiple subtyping, there is no easy
way to translate C++-M to Java-M. Multiple inheritance of C++-M means multiple inher-
itance of code and multiple subtyping. Only the last feature is supported by Java-M. This
leads naturally to the translation scheme exemplified by [Fig. 2], in which an interface
hierarchy in Java-M is created for every C++-M class hierarchy. However, this scheme



also demands the flattening of every C++-M class into a Java-M class without superclass.

The translation from C++-M to Green-M shows the power of polymorphism in
Green-M: every C++-M class is flattened into a Green-M class without superclass and that
is all. No class/interface needs to be created because of the Green-M subtype definition.

The translation from Smalltalk-M to Green-M only demands changes in vari-
able/return value types and the introduction of some type casts. This shows polymorphism
in Green-M is not much less powerful than that of Smalltalk. However, in the translated
Green-M code all types areAny. It could not be different since the runtime types of
a variable in Smalltalk-M are not computable. This scheme requires the creation of a
class for each method/number of parameters of the program. However, the translator
does not need to examine the entire program before starting the translation, as in the
second alternative of converting Green-M to Java-M. Classes likeMethod_m_k can be
created as the message sends are found by the translator. All the runtime type checking
of Smalltalk-M is translated to just a cast to a class, as in

((Method_m_k ) x).m(x 1, x 2, ..., x k)

The translation from Green-M to Java-M shows how different are the subtype def-
initions in these languages. Although both support only single inheritance, the differences
are profound in their support for polymorphism. In Java-M, a subtype must be explicitly
declared. But that is not always easy to do. For example, if classB inherits from classA
and we want it to be subtype of classC, we cannot. To achieve this or something equiva-
lent, it is necessary to change several classes and the code that uses these classes, which
may be spread in the whole program. It would probably be necessary to create some in-
terfaces. It can be worse. If we do not have access to the source code of classesA andB,
it is impossible to makeB subtype ofC.

Green-M does not have these limitations. A class is automatically made subtype
of every other class that declares a subset of its public methods. The contrast Green-M-
automatic and Java-M-declared subtyping shows itself in the two translations schemes
presented. In the first, the translator declares all variables in Java-M with typeAny,
except those variables that have a basic type in Green-M. This radical approach transfer
to runtime all type-checking — but this is not unsafe since Green-M is statically-typed
and the translation guarantees that a method will be found at runtime.

In the second scheme, the translator has to collect subtyping information in the
whole program before starting the translation. Hierarchies of interfaces in Java-M mim-
ics the real hierarchies of subtypes in the Green-M code. A variable in Java-M has a type
which is closely linked to its type in Green-M. Then this scheme offers a better repre-
sentation in Java-M of the Green-M code. The price of this is the need of analyzing the
whole program before the translation to collect subtyping information. Subtyping, which
is implicit in Green-M, is made explicit in the generated Java-M code by this analyzing
step.



References

America, P; Linden, F. V. D. (1991). “A parallel Object-Oriented Language with Inheri-
tance and Subtyping”; Proc. of Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), ACM, New York, 161-168.

Fowler, M.; Beck k.; Brant, Opdyke, W.; Roberts, D. (1999). “Refactoring: Improving
the Design of Existing Code”; Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). “Design Patterns: Elements of
Reusable Object-Oriented Software”; Addison-Wesley, Reading, MA.

Goldberg, A., Robson, D. (1983). “Smalltalk-80: The Language and its Implementation”;
Addison-Wesley, Reading, MA.

Gosling, J., Joy, B., Steele, G., Bracha, G. (2005). “The Java Language Specification”;
third edition, Prentice Hall PTR. Available at
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf.

Guimar̃aes, J. (2001). “An Idiom for Exception Treatment in C++ and Java”; Proc. V
Simpósio Brasileiro de Linguagens de Programação (Brazilian Symposium of Pro-
gramming Languages).

Guimar̃aes, J. (2008). “On Translation between Object-Oriented Languages”; Available
at
http://www.dc.ufscar.br/˜ jose/green/green.htm.

Guimar̃aes, J. (2007) “The Green language”; Available at
http://www.dc.ufscar.br/˜ jose/green/green.htm.

Guimar̃aes, J. (2006). “The Green language”; Computer Languages, Systems, & Struc-
tures, 32, 4, 203-215.

Guimar̃aes, J. (2003). “Experiences in Building a Compiler for an Object-Oriented Lan-
guage”; SIGPLAN Notices, 38, 4, 25-33.

Wirth, N. (1988). “The Programming Language Oberon”; Software, Practice & Experi-
ence 18, 7, 671-690.

Stroustrup, B. (1991). “The C++ Programming Language”; third edition, Addison Wesley,
Reading, MA.


