
Testing Student-Made Compilers

José de Oliveira Guimarães
Departamento de Computação

UFSCar - São Carlos
e-mail: jose@pink.ifqsc.usp.br

Brasil

24 de outubro de 2007

Resumo

This article presents a few guidelines and examples for
testing Pascal compilers designed by students in intro-
ductory courses. A standard Pascal subset with little
alteration is used, and the possible sources of errors are
divided into eight categories. Examples and probable
sources of error are exposed for each category.

1 Introduction

Program tests have been neglected in computer science
courses, particularly in introductory compilation courses.
Correctness in compilers is often hard to be obtained for
several reasons:

• They make use of complex data structures where
pointers and dynamic allocation of memory are
widely used.

• They must resemble the syntax and semantics of a
particular language whose definition is often innacu-
rate. A comprehensive knowlege of the language se-
mantics is required.

• The number of possible constructions and construc-
tion combinations is extremely high. Sometimes it
is necessary to generate a different code if a partic-
ular characteristic or construction is in presence of
another. For instance, upon calling the subroutine

P(x)
the real parameter (x) may be taken as local vari-
able, formal parameter by value, or reference. Also
the cases in which the formal parameter of P is by
value and reference should be considered.

The points discussed in this article relate to a sim-
plified Pascal [2] compiler. The information herewith
presented can be used in building tests for compilers
designed in introductory courses. The article is orga-
nized as follows: Section 2 is a preliminary discussion on
software-testing methodologies. Guidelines on building
tests for a Pascal compiler are presented in section 3.
Section 4 shows the conclusion of the article.

2 Program-Testing Methodolo-
gies

The methodologies for testing programs can be roughly
classified as human or non-human. The main hu-
man methodologies are inspections and walkthrough [1].
They are carried out by a group of people that analyse
the program under test. In a walkthrough, the program
is manually executed for a few test situations, while in
an inspection its logical conception is described by the
programmer as the other participants investigate its va-
lidity. The program will be checked with the help of a
list of frequent errors, e.g. non-initialized variables.

The second type of methodologies (non-human) in-
volves running the program to be tested with a subset
of data extracted from the input dominion, according to
the testing criteria. Such criteria generally fall within
one of the following test techniques:

• Black box tests. The required test elements are de-
fined without using the source code of the program
under test. Only the description of its input is em-
ployed. Ideally, there should be a test for each pos-
sible program input, which is not a feasible task. An
example of a black box test is the analysis of bound-
ary values. This method tries to create inputs that
fall near the limits estimated by the program speci-
fications.

• White box tests. In this case, the elements required
for the test are identified from the knowledge of a
particular implementation structure. Ideally, there
should be a test case for every possible execution
flow admitted by the program, which is again not
viable in practice.

The suggestions presented in this article are black box
tests, since they presume the testing of a generic Pascal
compiler whose source code is not available.

1

3 Designing the Set of Test Cases

The guidelines for detecting compiler errors presented in
this article were made to be used in the subject “Com-
piler Design II”, at the Federal University of São Carlos,
Brazil. They can be divided into eight categories:

• Insufficient knowledge of Pascal language

• Boundaries and unusual situations

• Errors in analysing literal integer constants

• Incorrect code generation

• Errors with the symbol table

• Errors in the lexic analyser

• Errors in the syntax analyser

• Errors in the semantic analyser

Each category has a set of remarks and examples that
can be employed in building tests for the compilers. Ex-
amples that could fit in more than one category were
arbitrarily placed in one of them.

The Pascal subset used excludes:

• Commands for and repeat until.

• Sets, scalar types, declaration of constants.

• Records.

The only data types of data are integer and boolean.
Array indexes cannot be of the boolean type. Arrays
can be passed as parameters, returned from functions
and used in attribution operations.

The code generated by the student-made compilers is
a pseudo-code for a hypothetic machine. The instruc-
tions on this machine manipulate adequately the prob-
lems originated by the block structure of Pascal.

The guidelines are shown more detailed below.

3.1 Insufficient Knowledge of Pascal
Language

The semantic details listed below are permit-
ted/prohibited in the language but often ignored
by the students:

• The words read, write, boolean, integer, true,
and false are not reserved words and thus can be
used as identifiers.

• The type of a subroutine parameter must be basic
(integer or boolean), or declared with type. An
illegal example could be:

procedure P(a: array[1..10]
of integer);

• The elements of a array can be of any type, including
another array. For instance:

var a: array[1..10] of array[1..10]
of integer;

• Comparison operations (> >= < <=) can be performed
upon boolean type values.

• The predefined procedure write can write integers
only. Writing boolean values is not permitted in the
Pascal dialect used. Similarly, the read procedure
does not take boolean parameters.

• A subroutine may have up to 32 parameters in the
Pascal dialect used.

3.2 Limits and Unusual Situations

This subsection presents examples and situations that
test the capacity of a compiler to manipulate borderline,
pathologic, and machine-dependent situations. Some of
these situations are:

• The Pascal program to be compiled has:

[1] 0 bytes

[2] 64 Kbytes (65536 bytes)

[3] 64 Kbytes - 1 (65535 bytes)

[4] 64 Kbytes - 2 (65534 bytes)

[5] 32 Kbytes (32768 bytes)

[6] 32 Kbytes - 1 (32767 bytes)

[7] 32 Kbytes - 2 (32766 bytes)

[8] 64 Kbytes and containing only the SPACE char-
acter (ASCII 32).

Some of the files above may lead to compiler errors
due to the limit values that an integer can store:

[1] -32,768 to 32,767 for a two-byte integer, with
signal.

[2] 0 to 65,535 for a two-byte integer, without sig-
nal.

An error example is: integer N with signal contains
the file size, which is 32,767 bytes. In case the ex-
pression N+1 is used, an error will occur. N+1 is
equal to -32,768, which is not what the programmer
expected.

• The hard disk or floppy disk does not have enough
space to write the code generated by the compiler
(assuming that the code will be written to disk).

2

• Memory runs out during dynamic memory allo-
cation (with Pascal’s new or C’s standard library
malloc) by the compiler. In this case the simplest
thing to do is terminate the compilation. A less
drastic solution would involve the return of an error
condition by the routine where the memory overflow
took place. The routine from which it was called
would also end its running and return an error sig-
nal, and so on. Two possible errors with the com-
piler (or any program) are:

[1] The success of memory allocation is not verified.

[2] The following situation occurs: procedure P calls
(at run time) routine Q which calls routine R
which in turn calls routine S. A memory allo-
cation failure happens in the latter, leading S
to terminate the execution and return an error
signal in one of its parameters. Upon calling S,
R verifies, by checking the parameter, that an
error has occurred in S and terminates its ex-
ecution, passing on the error signal to Q which
ignores the parameter of R and signals with the
error:

/* In language C, within Q */
R(&Error);

/* Variable &Error is no longer
used in Q */

• A recursive descendent analyser makes use of recur-
siveness to analyse syntax. The compilation of a
program with subroutine nestings (one within the
other) involves recursive calls on the compiler sub-
routines. If too many nestings exist, there will be
too many recursive calls, which may overload the
computer stack memory. This is limited to 64 Kb
in the IBM PC. If the compiler has been compiled
with too small a stack size, memory may run out
even during the compilation of programs with few
nestings.

3.3 Errors in the Analysis of Integer
Constants

The language subset defined for the compiler does not
accept real numbers. Nevertheless, there can be a num-
ber of errors in the analysis of integers. According to
the Pascal specification used, integer values must lie be-
tween 0 and 32,767. Negative numbers will be obtained
from the least unary operator. Thus, -32,678 is an illegal
number. A few details to be considered are:

• Numbers 32,769 and 32,768 are illegal, whereas
32,767 and 32,766 are legal.

• A number must not be followed by a letter. If the
analyser were scanning letters and numbers up to

procedure P;
var a : integer;

begin
a:= 12end;

Figura 1: Keyword at the end of a number

procedure P;
var a : integer;

begin
a:= 12345end;

Figura 2: Keyword at the end of a 5-character number

five characters (the largest possible number, 32,767,
has five characters), an error would probably be sig-
nalled in the example shown in Figure 1. This might
not happen with the example of Figure 2.

• A number can have any number of zeros preceding
the first non- zero digit, if the latter exists. The
following numbers are therefore valid:

0000000000000000000000 {number 1}
0000000000000000012345 {number 2}

These numbers may lead the analyser to comitting
several mistakes:

– The maximum number of digits of the greatest
integer (32,767) is five. Based on this, the anal-
yser may consider (number 1) and (number 2)
as outrangers.

– If the analyser skips all zeros preceding a non-
zero digit, it may signal an error from not find-
ing a non-zero digit in (number 1). Or it might
accept the number, assigning it another value
like the algorithm below:

/* N not initialized */
if character = ’0’
then
while character = ’0’ do
get next character

endif
if character is digit
then
N = 0;
while character is digit do

N = 10*N + ord(character)
- ord(’0’)

endif
/* with (number 1), n will hold an

undefined value at this point of
the program */

3

/* language C */
n = 0;
i = 0;
while (*s != ’\0’ && i < 6) {
n = 10*n + *s - ’0’;
s++;
i++;
}

if (n >= 32768 || i == 0) ERROR();

Figura 3: Example of an incorrect code for the convertion
of a string into a number

• The programmer has the option, as numbers are
scanned, of placing its characters in a string:

S = ’’; /* empty string */
while character is digit do

append ch to the end of S
get next character

endwhile

If there are not enough string positions for a given
number, and if there is no checking upon the max-
imum number of characters the string can store,
there will be use of non-allocated memory for this
variable, which brings about a compiler crash.

• An error in the conversion routine of characters to
numbers may lead the compiler to accepting values
greater than 32,767. An example of faulty coding is
given in Figure 3. In the IBM-PC, if n is considered
as an unsigned integer (unsigned int in C, maximum
value = 65,535), no error would be signaled upon
analysing 70,000. It would be considered as 70,000-
65,536, hence less than 32,768.

3.4 Incorrect Code Generation

Sometimes the code for operators, commands, or lan-
guage instructions is incorrectly generated. Correcting
this type of error (in simple, non-optimized codes) is of-
ten uncomplicated. A few remarks on code generation
errors are given below:

• The compiler may generate a code for a certain op-
erator in place of another (e.g. > instead of >=).

• Some machine instructions for which the code is gen-
erated comprise parameters such as the current lexic
level (subroutine nesting level), the number of words
occupied by the local variables of a subroutine, and
so on. Errors occur when the instruction operands
are incorrectly considered, such as setting the num-
ber of local variables of a subroutine in place of the
number of memory words occupied by these vari-
ables.

• The generation of code for manipulating value and
reference parameters conveys many error possibili-
ties. A few points to be regarded are:

[1] Procedures read and write with real formal pa-
rameters by value and reference. Also the cases
read(x[1]) (reading a array element) where x
is a formal parameter by value/reference must
be considered.

[2] In the subroutine call
P(x)
there are four cases to be considered from the
combination of the following options:

– x is a parameter by value/reference.
– The formal parameter of P is by

value/reference. This test must also
be applied if x is a array or an element of
a array (e.g. P(v[1])).

[3] All parameter types (value/reference, basic
type/array) must be considered on the left side
of an attribution: X:=Y

• The address of an indexed array (e.g. a[i,j]) must
be checked for correctness. Such address is calcu-
lated in three situations:

– When an element a[i,j] of a array is passed
as a parameter by reference.

– a[i,j] is a real parameter by value or is placed
in an expression.

– a[i,j] is on the left side of an attribution (:=).

In each of these cases, it must also be checked
whether a[i,j] is of a basic type (integer,
boolean) or is a array (thus having at least 3 di-
mensions).

• Prior to invoking a function, enough space for its
return value must be allocated on the stack.

• In a typical compiler, the labels are produced in the
form of an L followed by a number, e.g. L1, L2, L3,
. . . . A compiler routine like GetLabel is responsible
for providing the next label to be used in the code
generation. A possible error is to associate a label
declared in the Pascal program as
label 2;
to the code generation label named L2. The cor-
rect procedure would be to associate label 2 of the
program to a real label generated by GetLabel.

3.5 Errors in the Symbol Table

This subsection discusses errors related to the inserting,
consulting, or removing information from the data struc-
ture used in the compiler Symbol Table (ST).

4

program UpperLower;
var index, NUMBER : integer ;
begin
{ checks if letter cases
are disregarded }

INDEX := 1 ;
number := 2
end.

Figura 4: This program tests whether the compiler con-
siders upper and lower case letter as equivalent

• A reserved word is not considered as such. Con-
versely, it is also an error to consider non-reserved
words like file, real, packed, string, case, for,
as reserved words. Such words are not employed in
the Pascal dialect used in this article.

• Identifiers lying out of the scope must be eliminated
from the ST. Upon terminating the compilation of
a subroutine at lexic level N, all subroutines in level
N+1, as well as the variables in level N, must be
removed from the ST. The subroutines that are vis-
ible in level N are the ones already defined either in
lower levels or in level N+1.

• The number of variables and subroutines visible at
a given time must be limited exclusively by the
amount of memory available in the computer.

• The language accepts an unlimited number of array
dimensions. A static data structure to store array
information would limit that number unecessarily.

• Pascal considers upper and lower case letters in iden-
tifiers as identical. A typical compiler would imple-
ment this rule as follows:

[1] An identifier is converted to upper case prior to
its insertion into the ST.

[2] An identifier is converted to upper case before
it is searched for on the ST.

The test shown in Figure 4 checks whether such ac-
tions have been performed:

[1] Variable index is declared in lower case and
used in upper case to verify action 1. When
a variable is declared, it is inserted in the ST.
Whenever it appears in the subroutine body, a
search is performed upon the ST.

[2] Variable NUMBER is declared in upper case and
used in lower case to verify action 2.

• An identifier declared in lexic level N+1 has a higher
priority than another one by the same name, de-
clared in a level equal to or lower than N.

if character = ’{’
then
repeat

character = next character;
until character = ’}’

endif

Figura 5: Procedure for removing comments

Let us consider that the Symbol Table is imple-
mented as a stack where the identifiers in lexic level
N+1 are placed above (the stack grows upwards) the
ones in level N. An error occurs if the search for an
identifier starts at the bottom and proceeds to the
top of the stack. In this case, the identifiers in level
N would be considered first.

3.6 Errors in the Lexic Analyser

The lexic analyser is responsible for forming identifiers
and numbers to subsequently pass them to the syntax
analyser. It also filters out the remarks. The erroneous
generation of a token leads to error propagation through
the other analysers, thus causing a general compiler er-
ror.

• If the recognition of integer numbers is assigned to
the syntax analyser, the compiler will possibly ac-
cept numbers with spaces between digits. In this
case, all of the three attributions below would be
considered equivalent and correct:

a:= 12 3; a:= 12{A}3; a:= 123;

• Unclosed remarks should be predicted in order to
avoid compiler crashes. Figure 5 shows an incor-
rect algorithm for recognizing remarks. The correct
procedure would be repeat until character=’{’ or
“EndOfFile”.

• The compiler must accept identifiers of any size, con-
sidering the first 32 characters as significant. Two
identifiers will be equal if the first 32 characters are
equal. If only the 32nd character is different, then
they will be different. Possible errors are:

– Either the compiler signals an error when it
finds a word with over 32 characters, or it
places more than 32 characters in a string type
variable of ST that has only 32 positions avail-
able. This may cause writing on a memory area
that was not assigned this task.

– Only the first 31 characters (instead of 32) of an
identifier are considered significant. Accepting
more than 32 characters is not considered an
error.

5

procedure GetToken()
begin
if character = ’{’
then
skip comment

endif
if character is not valid as identifier,

number or operand
then Error()
else Gets Token
endif
end

Figura 6: Erroneous procedure for identifying comments

• Valid characters in identifiers are letters and num-
bers, the first character being a letter. The under-
score () is not permitted.

• A quite common error is not allowing one comment
to be followed by another, as in the example below:

{ comment } {}

An incorrect algorithm to eliminate comments is
given in Figure 6.

• The Tab character (#^I) is valid and must count as
a space. ^Z is also valid and means “end of file”.

• All characters are valid inside a comment, except
the closing character, ’}’.

3.7 Syntax Analiser Errors

This subsection describes examples that test the fidelity
of the syntax analiser to the Pascal grammar used. It is
illegal:

• A comma not followed by an identifier in the dec-
laration of variables, parameters, or in subroutine
calls.

var a, b, : integer;
procedure P(x, y, : integer); ...
P(a, b,);
read(a,);
write(a,);

It is important to have read or write tests, as well
as subroutine call tests (P). Such pre-defined pro-
cedures are in general implemented with their own
syntax analiser routines, that is, an error in the read
analysis does not imply the existence of the same er-
ror in write or in normal subroutines.

• Absence of identifier/type:

procedure ParameterPassage;
begin
{ Have you found it open parenthesis }
while token <> close_parenthesis do
{ analyses parameters and generates code }
if token <> comma then GENERATE_ERROR
token = GetNextToken

endwhile
{ It should check here whether the number of
parameters encountered equals the number of
formal parameters in the subroutine }

end { procedure }

Figura 7: Erroneous procedure for parameter passing
analysis

var : integer;
var i : ;

• A NULL command (according to the grammar used)
is not allowed. The code below is therefore illegal:

while true do
; { null command }

• Operator without an operand:

a:= *2;

3.8 Errors in the Semantic Analyser

This subsection deals with errors in the semantic anal-
yser of a Pascal compiler. Semantic errors are possible
even when the syntax analyser is correct. A few critical
situations are mentioned below:

• Absence or excess of subroutine parameters. Most
likely, the error will occur if the compiler accepts
fewer parameters than the subroutine requires. The
algorithm in Figure 7 bears such mistake.

• A function F (F:= expression) can be assigned re-
turn values in its body or within its nested subrou-
tines. Apart from these sites, the assignment will be
erroneous.

• Whenever a function F is assigned an expression
(F:= expression), the expression must be of the
same type as the return value type of F given on the
header.

• An expression cannot be real parameter for read
or when the corresponding formal parameter is by
reference.

• Arithmetic operators (logical) can only act upon in-
tegers (boolean values).1

1In the Pascal subset used, the bit-to-bit AND or OR on integers
does not exist (e.g. 2 and 7).

6

According to the Pascal syntax diagram, the oper-
ators and and * are in the same priority level, like
or and +. A typical compiler implementation treats
equal priority operators in a while loop:

t = Term() { comment }
while token = Plus or token = OR do
{ analyses operand }

...
endwhile

A possible error would be checking type matching
of the first and last parameters only, thus admitting
expressions like

1 + 3 + true + 4 + 5

• The upper and lower limits of an array are subject
to the restriction “upper >= lower”. Two errors
may happen:

[1] rejecting upper = lower

[2] accepting upper < lower

• The arguments of read and write must be integers.
Arrays are not permitted.

• Labels defined twice:

99: write(1);
...
99: write(2);
...

• Goto command to a “label”which has been declared
but is not defined in the subroutine body where it
was declared. Because this error is only flagged at
the end of a subroutine compilation, most student-
made compilers will not raise it.

• Conversely, a label error will also occur if the label
is defined but has not been declared.

• To use procedures on the left side of an attribution
(in its body) or in an expression.

• A function call is an expression.

• The words read and write are not considered re-
served words in Pascal, but are treated as special
procedures since the number of parameters is not
fixed. read and write are inserted (in a typical
implementation) in the Symbol Table and receive
special treatment by the compiler routine that anal-
yses procedure calls. An example of such routines
is given in Figure 8. Upon analysing the command
“write(1,2,3)”of Figure 9 , the compiler classifies

if simbolo = "WRITE"
then
{ Analyses Pascal’s write }

else
if simbolo = "READ"
then
{ Analyses Pascal’s read }

else
{ Analyses user defined procedure }

endif
endif

Figura 8: Erroneous algorithm for procedure analysis

program Wr;
procedure write(n : integer);
begin
n:= 1
end;

begin
write(1,2,3)
end.

Figura 9: User-declared procedure write

the word “write”as a procedure,2 and the algorithm
of Figure 8 is executed. It tests whether the word
string (the procedure name) is equal to the string
"WRITE". Since that is true, the procedure found is
regarded as the Pascal pseudo-procedure write in-
stead of a user-defined procedure. Hence, procedure
write declared in the program is always masked by
Pascal’s write and can never be used.

• Circular type definitions. For instance:

type T = T;

The first T, right after type, must only be in-
serted in the Symbol Table after the analy-
sis of the type following “=”. The definition
“type integer = integer”is considered legal.

• A variable read has been declared, but the program
still accepts the Pascal procedure read, which is in-
correct. The distinction between the procedure and
the variable can be made from the token that fol-
lows the identifier (“(”or “:=”), when it begins a
command.

read (a) ;
read := 12 ;

2Other classes are : variable, parameter, type, label,...

7

4 Conclusion

This article has presented guidelines for designing tests
on simplified Pascal compilers like the ones built in intro-
ductory compilation courses. The guidelines comprehend
several topics, such as code generation, lexic analysis,
syntax, and semantics. Within each topic, a considerable
number of possible compiler errors have been explained.

Acknowledgments. We are thankful to José Carlos
Maldonado for the revision of this article and for the
suggestions presented.

Referências

[1] Myers, Glenford J. The Art of Software Testing. John
Wiley & Sons, 1979.

[2] Wirth, Niklaus and Jensen, Kathleen. Pascal User
Manual and Report, Springer-Verlag, 1985, Third
Edition.

8

