
The Green Language

José de Oliveira Guimarães

Departamento de Computação, UFSCar, São Carlos - SP 13565-905 Brazil

Abstract

Green is a statically-typed object-oriented language which supports parameterized
classes, metaobjects, introspective reflection, and classes as first-class objects. Its
exception system is completely object-oriented for it encapsulates in classes not only
exceptions but also exception handling. The language definition of subtyping is more
encompassing than subclassing, thus improving polymorphism. Classes are classless
objects which have themselves types. This makes classes first-class objects without
the problems associated to languages in which every class is an object of another
class, its metaclass. Every basic value such as 7 or ’A’ is considered as an object
whenever necessary which makes programming easy and increases polymorphism.

Key words: object-oriented languages, Green, type systems, polymorphism,
exception handling system

1 Introduction

Green is a statically-typed object-oriented language which supports parame-
terized classes, classes as first-class objects, runtime metaobjects, introspective
reflection, and garbage collection. This language offers a completely object-
oriented exception system, assertions, and methods with variable number of
parameters. Green considers a class S subtype of class T if S defines at least all
methods of T — it does not matter whether S inherits from T or not. Multiple
inheritance is not supported.

Green uses a Pascal-like syntax with some C elements, as can be seen in Fig-
ure 1. This Figure declares a class Date which keeps the day, month, and year.
The constructor of the class is always called init and appears before the
public section. There may be several of them, with variable number/types

Email addresses: jose@dc.ufscar.br (José de Oliveira Guimarães), Tel.: 55 16 260-
8607 Fax: 55 16 260-8233 (José de Oliveira Guimarães).

Preprint submitted to Computer Languages, Systems, and Structures3 December 2003

class Date

proc init(month, day, year : integer)

begin

self.month = month;

self.day = day;

self.year = year;

end

public:

proc getDay() : integer

begin

return day;

end

proc getMonth() : integer ...

proc getYear() : integer ...

proc set(month, day, year : integer) ...

private:

var day, month, year : integer;

end

Fig. 1. Class Date

of parameters. Methods are declared with keyword proc and variable decla-
rations are preceded by var. An object is created by sending message new to
the class:

var xmas : Date;

xmas = Date.new(12, 25, 2003);

// print the year -- this is a comment

Out.writeln(xmas.getYear());

As will be seen later, class Date is an object and therefore it can receive
messages as new.

All variables whose types are classes, like xmas, are in fact pointers to objects.
They obey reference semantics. If the type of a variable is a basic type (char,
integer, byte, real, ...), the variable obeys value semantics — it holds a
value, it does not point to a value (object). A variable may be declared with
type @Date to mean it obeys value semantics — it would be an expanded
variable. This concept has several peculiarities which will not be discussed in
this paper. It was based on a similar concept of Eiffel [15].

The rest of the paper discusses the features of Green. Its type system is pre-
sented in Section 2. The exception system is described in Section 3. Section 4
introduces the reflective features of Green. The constructs that do not fit in
any of the previous sections are presented in Section 5. Section 6 concludes.

2

2 The Type System

In Green, the type of a class is the set of signatures of its public methods. The
signature of a method is composed by its name, parameter types, and return
value type (if any exists). For example, the type of class Date of Figure 1 is

{ getDay() : integer, getMonth() : integer,

getYear() : integer, set(integer, integer, integer), ... }

in which { and } delimit the set as usual. In this set the last item, “...”,
represents some methods the compiler adds to every class — that will be
discussed later.

The init method, the constructor, is not in the public part and it does not
belong to the type of the class. The public section of a class cannot declare
instance variables.

The type of a class is usually taken by the class itself. So, we say “type Date”
meaning “the type of class Date”.

A type S is subtype of type T if T ⊂ S. That is, a subtype has at least all
the method signatures of the supertype and usually more. A method of a
supertype should be defined at the subtype with exactly the same signature
— contra-variant and covariant rules [13] are not used.

The language supports abstract classes which may declare abstract methods
(bodiless methods). Objects of abstract classes cannot be created.

A subclass inherits all methods of the superclass. Then the subclass has the
methods it defines plus the superclass methods. This means the subclass is
subtype of the type of the superclass. Subclassing means subtyping — all
subclasses are subtypes. And there may be subtypes that are not subclasses
— the definition of subtype does not use the word “inheritance”. Therefore
subtyping is a much more embracing concept than subclassing. There are more
subtypes than subclasses, which increases polymorphism in the language.

The Green definition of subtyping has been used by POOL-I [1], School [18],
and Emerald [17]. This last language does not support inheritance.

A class may be subtype of several classes although it may inherit from just
one class. Multiple subtyping may act as a substitute for multiple inheritance.

Note that is not necessary to declare “class S is subtype of class T”. A class
S will be considered subtype of T whenever S contains at least all T method

3

object Date

public:

// return the last day of the month

proc getMaxDay(month, year : integer) : integer ...

// get today

proc getCurrentDate() : Date ...

const NumMonths : integer = 12;

end

Fig. 2. Class object Date

signatures.

2.1 Class Objects

Figure 2 declares an object that is the class Date. Classes are objects in Green,
although objects that do not have themselves classes. The declaration of object
Date starts with keyword object and may contain methods and variables as
the declaration of a class. In addition to that, constants may be declared.

The code of Figure 2 should appear before that of Figure 1 in a file called
“Date.g”.

An object like Date of Figure 2 is called class object, an object that represents a
class. If the programmer did not supply class object Date, the compiler would
create one automatically. If only the class object is supplied, the compiler
creates a class Date without any methods except the ones added to every
class by the compiler.

A class object is much like an object of a prototype or delegation-based lan-
guage — it exists from the start to the end of the program execution. And a
class object B is completely unrelated to class object A even if class B inherits
from class A.

As objects, class objects can receive messages:
today = Date.getCurrentDate();

Constant NumMonths may be accessed similarly:
n = Date.NumMonths;

Class object methods like getCurrentDate are similar to static methods of
C++ and Java. These methods are the equivalent of class methods of Smalltalk
[6]. Class methods are the methods of the class of the class (considered as an
object). The class of the class is called a metaclass. Then getCurrentDate

works as a method of the metaclass of class Date. The class object Date plays
the rôle of metaclass of class Date. Class objects have some of the responsi-
bilities of metaclasses:

4

• they may provide variables and methods shared by all instances of the class;
• they supply new methods to create class instances.

Since class Date (Figure 1) defines a constructor init(integer, integer,

integer), the compiler adds to class object Date (Figure 2) a method
new(integer, integer, integer):

var xmas : Date = Date.new(12, 25, 2003);

This is very important: the compiler adds a new method to the class object
Date so that an object of class Date is created by a method call. Then object
creation in Green is made through message send and not through a special
operator as in Java/C++. Eiffel [15] uses an operator with an optional message
send.

Class objects have a few of metaclass responsibilities. However, metaclasses
[2] [5] [6] [14] have much more duties and are more complex than class ob-
jects. The complexities of metaclasses are discussed by Guimarães [12]. One
of the difficulties with metaclasses is that if each class is an object of its meta-
class, then there is an infinite chain of metaclasses. Class A is an object of
Metaclass-A which is an object of Meta-Metaclass-A, and so on.

The class object concept eliminates this infinite regression by stating that class
objects do not have classes. However, class objects do have types, which can
be got by the compile-time function type:

var d : type(Date);

d = Date;

// print the day of today

Out.writeln(d.getCurrentDate().getDay());

By allowing to type classless class objects, the Green type system integrates
classes, considered as objects, into the type system. We are not aware of any
other statically-typed language with similar or equivalent feature.

Arrays are classes in Green. Since each class has an associated class object,
each array class has a class object. The class name of a one-dimensional integer
array is “array(integer)[]”. The class object has this same name and can
receive messages such as new for object creation. See the example below.

var ia : array(integer)[];

// allocates an array with 100 positions

ia = array(integer)[].new(100);

// all elements are set to 0

ia.fill(0);

5

Any

AnyClass

Date

AnyArray

array(char)[]

AnyClassArray

array(Date)[]

AnyClassObject

* class object Date

Fig. 3. Class and type hierarchies of Green

Since arrays are classes, array objects are dynamically allocated. The number
of elements of each array dimension is specified at runtime in the parameter
to new.

2.2 The Subtype/Subclass Hierarchies and Polymorphism in Green

Any non-basic class that does not explicitly inherits from another class is made
a subclass of AnyClass. This class inherits from class Any, the top-level class.

All arrays of basic types (char, integer, ...) are classes and inherit from class
AnyArray, which inherits from AnyClass. The Green class and type hierarchies
are shown in Figure 3. In this Figure, if class B inherits from class A, B is put
in the line below A and to the right of it. We used classes char and Date as
representatives of basic classes and regular classes.

Class “array(char)[]” is an array of char and inherits from AnyArray.
The * in the last line means “subtype”. So class object Date is subtype of
AnyClassObject – this will soon be explained.

Class Any defines some generic methods such as
shallowClone() : Any

equals(other : Any) : boolean

Class AnyClass defines some methods, among them,
getClassObject() : AnyClassObject

which returns the class object of the object. Then, if d is set as
var d : Date = Date.new(12, 25, 2003);

d.getClassObject() returns class object Date.

Objects in Green have types. The type of an object is the set of its public
method signatures. Therefore a class object has a type and may be subtype of
a class. In fact, every class object is a subtype of class AnyClassObject, even
though class objects are classless objects. AnyClassObject inherits from Any

and defines some methods specific to class objects. To illustrate the concept

6

of “objects with types”, let us show an example:
var co : AnyClassObject = Date;

var any : Any = Date;

The assignments above are legal. They obey the rule that says that assign-
ments of the kind “type = subtype” are legal. Note that the “Date” that
appears in the code above is the class object Date. In

var d : Date;

the “Date” is the class Date.

Since every class object is subtype of AnyClassObject, which inherits from
Any, every class object defines all methods declared in these two classes. These
methods should be declared and not inherited, for class objects are classless
objects.

The programmer need not to declare all Any-AnyClassObject methods in
every class object. The compiler does that automatically. This mechanism
integrates classless class objects into the type system.

Basic values such as ’A’, 5, and 3.14 are special objects for variables of basic
types obey value semantics — the variables contain the values, they do not
point to them. However, they may be packed into objects of wrapper classes
in order to become normal objects:

var I : Integer; // wrapper class

I = Integer.new(0); // packs 0

Such mechanism can be provided by any language. The novelty in Green is
that there is automatic conversion between wrapper objects and basic values:

I = 1; // cast 1 to wrapper object

var i : integer;

i = 5*I + i/I;

Then every basic value may be considered as an object if the programmer
wishes so. In particular, a variable of type Any may receive anything in an
assignment or parameter passing: an object, a class object, or a basic value of
any type (char, integer, real, etc). For short, we can program in Green as
if everything were an object.

Basic values are special objects but are objects anyway. The number 5 for
example is an object of class integer which defines methods toString() :

String and get(i : byte) : byte (returns the ith byte of the integer). Then
the following code is legal.

var s : String;

// s = "5"

s = 5.toString();

// prints "integer"

Out.writeln(5.getClassInfo().getName());

7

class CatchDateException

public:

proc throw(exc : ZeroYearException)

begin

Out.writeln("Year 0 does not exist !");

end

proc throw(exc : IllegalMonthException)

begin

Out.writeln("Month should be between 1 and 12. Found " +

exc.getMonth());

end

proc throw(exc : IllegalDayException)

begin

...

end

end

Fig. 4. Catch class CatchDateException

Every array inherits directly or indirectly from AnyArray which defines
some general methods such as “getSize() : integer”, “set(value : Any;

index : integer)”, and “get(index : integer) : Any”. Arrays of basic
classes define some interesting methods as “forEach(f : Function(T))”
in which T is the basic class. Function is an abstract parameterized class
which takes a parameter T — parameterized classes are explained in Section 5.
Class array(integer)[] then defines “forEach(f : Function(integer)

)”. This method scans the array calling method exec (defined in class
Function) on each array element. Of course, the programmer should subclass
the abstract class Function and define exec. There are other methods in the
arrays of basic classes such as “collect(f : Filter(T)) : array(T)[]”
and “remove(f : Filter(T))”. Method collect returns another array with
the elements x of the array such that “f.test(x)” is true. Method remove

removes from the array all elements x that make test evaluate to true.

Arrays of non-basic classes such as array(Date)[] are subclasses of
AnyClassArray — see Figure 3. AnyClassArray defines methods similar to
the basic-class arrays but with class Any replacing T. For example, it defines
“forEach(f : Function(Any))”.

For sake of efficiency, array classes cannot be subclassed.

8

3 The Exception System

The exception system of Green is completely object-oriented. It encapsulates
exceptions in objects as usual in object-oriented languages. But it also en-
capsulates exception handling in objects. To understand that, imagine a try
command of C++/Java. It is followed by several catch clauses. In Green,
these catch clauses are transformed into methods of a catch class. An ob-
ject of this class is passed to the try statement as parameter and it becomes
responsible for exception handling. Let us see an example:

catchDate = CatchDateException.new();

try(catchDate)

// start of the try block

...

if year == 0

then

// throw or signal an exception

exception.throw(ZeroYearException.new());

endif

if month < 1 or month > Date.NumMonths

then

exception.throw(IllegalMonthException.new(month));

endif

...

end // end of the try block

CatchDateException, shown in Figure 4, is a catch class. It has a throw

method for each exception the programmer wants to catch in the try block
— the block between try and end (see example above). The parameter of the
throw method must be an exception class, which should inherit from class
Exception. An object of CatchDateException is passed to try in the line
“try(catchDate)”.

An exception is thrown (or signalled) by calling method throw of pseudo-
object exception. Then the corresponding method throw of the catch object
catchDate is called. After that, the control is transferred to the first statement
following the try block. Everything happens as if exception referred to the
same object as catchDate.

Everything becomes clear when we study the exception signaling
exception.throw(IllegalMonthException.new(month));

When this statement is executed, a search for a method throw that may accept
a IllegalMonthException is made at the class of the catchDate object,
CatchDateException (Figure 4). This search is made from the first to the

9

last declared method. The method found is executed. If none were found, the
exception would be propagated — the same action is taken in C++/Java when
no catch clause can accept the exception thrown in the attached try block.

try statements may be nested:

try(catchTwo)

try(catchOne)

...

exception.throw(anException);

...

end

end

When the exception anException is thrown, a search in the class of object
catchOne is made for a throw method that can accept anException as pa-
rameter. If this search fails, a new search is made in the class of catchTwo.

The parameters to try statements are pushed into a stack called “stack of
catch objects”. The search for a throw method is made from top to bottom in
this stack. The program can inspect this stack at runtime — see Section 5.

Methods may declare the exceptions they may throw using the following
syntax:

proc setBirthday(day, month, year : integer)

(exception : CatchDateException)

begin ... end

This means setBirthday may throw ZeroYearException,
IllegalMonthException, and IllegalDayException, the parameter
types of the throw methods of CatchDateException.

A method should either catch the exceptions it may throw or declare them in
its interface. In this way, no user exception may be thrown and not caught by
the program.

An unchecked exception is a special exception that need not to be caught by
the user code. Unchecked exceptions may only be thrown by the runtime
system, never by the user code. OutOfMemoryException is an example of
unchecked exception.

Green has default handlers for all unchecked exceptions. These handlers are
throw methods of class object HCatchUncheckedException. The default han-
dlers can be changed at runtime by supplying a new catch object to the run-
time system:

Runtime.setCatchUnchecked(MyDefaultHandlers.new());

Now handlers of MyDefaultHandlers will have precedence over the handlers

10

w -

®

­

©

ª
F - mQ

Fig. 5. A shell F attached to an object Q

of class object HCatchUncheckedException.

Class objects CatchAll and HCatchAll of the Green Standard Library
catch every exception. Besides that, HCatchAll also terminates the pro-
gram. Then we can use “try(CatchAll) ... end” where we would use
“try { ... } catch(Exception e) {}” in C++/Java.

4 Reflection

A program written in a reflective language may change and/or inspect itself at
runtime. A language that supports behavioral reflection allows the program to
change some aspects of itself at runtime. The program may load new classes,
intercept message sends (and redirect them to other objects), replace methods
of a class, and so on.

A language that supports introspective reflection allows a program to get in-
formation (inspect) on itself at runtime. The program knows the names of all
of its classes, the methods of each class, the name and types of each method
parameter, the methods of the stack of called methods, and so on.

4.1 Behavioral Reflection

Green supports both behavioral and introspective reflection. Behavioral re-
flection in Green only allows one to intercept messages sent to an object. It is
implemented by metaobjects, which are called shells in Green.

A shell is a pseudo-object with methods and instance variables. It may be
attached to an object as graphically represented in Figure 5. After that, any
message sent to object Q through any variable will be first searched in shell
F and then in the object.

A shell class Border is defined in Figure 6. A shell Border is an object of
shell class Border. It may be attached to objects of Window and its subtypes.
Assume class Window has a parameterless method draw. Shell class Border can
only define methods already defined in Window — Border should be supertype

11

shell class Border(Window)

proc init()

begin

end

public:

proc draw()

begin

self.drawBorder();

// call object method

super.draw();

end

private:

proc drawBorder()

...

end

Fig. 6. A shell class Border to subtype-Window objects

of Window.

Suppose w is a Window object. A Border shell is attached to this object by the
statement

Meta.attachShell(w, Border.new());

This results in the configuration shown in Figure 5 in which F is the shell of
shell class Border and Q is the Window object. Now, a call “w.draw()” will
invoke method draw of Border — the method is first searched for in the shell
and then in the object (see Figure 5). In the shell, method draw of shell class
Border is found and called — see Figure 6. In this method, “super.draw()”
will invoke method draw of Window — shell F of Figure 5 calls draw of object
Q.

A method
proc interceptAll(mi : ObjectMethodInfo;

vetArg : array(Any)[])

may be declared in the shell class. This method will then intercept all messages
sent to the object the shell is attached to. The message will be packed into
parameters mi and vetArg. The first one describes the method of the object
that would be called if there were no shell. Parameter vetArg contains the
parameters of the call. As an example, suppose shell class Border defines an
interceptAll method (and only it) and variable w refers to a Window object
with an attached Border shell (as shown in Figure 5). In a message send
“w.draw()”, method interceptAll of shell F would be called. Parameter mi
would describe method draw of Window. Parameter vetArg would contain zero
elements since there is no argument to draw. Using mi, the Q method draw

can be called by “mi.invoke(vetArg)” inside the method interceptAll of
object F of shell class Border.

12

Shells may be attached to class objects, which are also objects. A shell may
control object creation. For example, suppose a shell class WindowControl

defines a method new() and class Window defines a constructor init(). Then
class object Window will have a new() method that creates a new Window

object. After a WindowControl shell is attached to class object Window, the
call “Window.new()” will invoke method new of the shell.

4.2 Introspective Reflection

Green offers an almost complete support for introspective reflection. There are
31 classes in an Introspective Reflection Library (IRL) used to describe all the
aspects of a Green program. At runtime a program knows all its classes, the
instance variables and methods of each class, the parameters of each method,
the inheritance relationships, and so on.

As an example, the code below prints the names of the methods of class
Student.

// assume Student is subclass of Person

var s : Person;

s = Student.new("Mary", 1980);

var v : array(ClassMethodInfo)[];

v = s.getClassInfo().getMethods();

// v now has a description of all Student methods

for i = 0 to v.getSize() - 1 do

Out.writeln(v[i].getName());

Green gives the same treatment to regular objects and class objects. Although
class objects are classless, we can get information on their methods through
the IRL. But in this case we should use methods not shown in the previous
example.

5 Other Language Features

Green supports assertions, which are expressions that should be true before
and/or after a method is called at runtime. For example, the method

proc push(x : integer)

assert

before not full();

var oldSize : integer = getSize();

after not empty() and oldSize == getSize() - 1;

13

end

begin // method body

...

end // push

of a class Stack defines a pre-condition “not full()” which should be true
when the method is called and before its body is executed. If this condition
is false, an unchecked exception is thrown. “full”, “empty”, and “getSize”
are methods of Stack.

The expression following “after” is the post-condition. It should be true after
the method ends its execution. If it is not, an unchecked exception is thrown.
Between the before and after clauses there may appear zero or more variable
declarations. These variables are set after the pre-condition is tested and they
should be used only in the after clause.

A method may have a variable number of parameters. An example is the
method

// the ... is part of the Green syntax

proc print(numSpaces : integer;

v : ... array(Person)[])

var i : integer;

begin

for i = 0 to v.getSize() - 1 do

begin

printSpaces(numSpaces);

Out.writeln(v[i].getName());

end

end

The real arguments passed to print should be an integer (for numSpaces) and
any number of objects of class Person or its subtypes.

Green has some standard class objects used for input/output/memory man-
agement/runtime support. Class objects In and Out are used for standard
input and output. Class object Memory supplies methods for memory manage-
ment such as doGarbageCollection, collectionOn, and collectionOff.

Class object Runtime defines methods exit (ends a program),
getClasses (returns a vector with information on all program classes),
getCatchObjectStack (returns a stack with the catch objects — see
Section 3), etc.

Green supports parameterized classes. An example is class Stack:
class Stack(T)

14

...

end

A stack is declared as in “var s : Stack(char);”. Parameter T is replaced
by char in the text of class Stack and a new class is created and compiled.
Each new parameter means a new class. T must be used as a type inside class
Stack.

Class Stack may have been declared as “class Stack(T : Window)”. In this
case, the real parameters to class Stack, besides being classes, should be sub-
types of Window. And they should define all init methods Window defines.
That is, if class Window defines “init()” and “init(integer)”, so should
the classes that are real arguments to Stack.

6 Conclusion

All of the features of the Green language were designed simultaneously. That
prevented incompatibilities between newly added and old features. During the
design of the language, the introduction of a new construct/feature triggered
an examination of the whole language for incompatibilities between features
or implementation problems. Frequently a new construct caused modification
of old ones, keeping the parts compatible with each other.

This interactive language design is also responsible for the relative simplicity
of the language. 1 Sometimes a construct was modified to make other simpler.
For example, metaobjects of other languages [3] [4] [7] [8] use special protocols
to intercept object creation. 2 We could have supplied a protocol for object
creation in Green too. But we chose to add new methods to class objects to
create new objects. Then to intercept object creation in Green is to intercept
a new method of a class object — this is a regular operation of shells (metaob-
jects) that needs no special protocol. Then the new methods of class objects
simplified the design of metaobjects.

In other statically-typed languages [16] [19], the set of static variables and
methods of a class do not compose an object. If they did, it would be difficult
to assign a type to this object, since it does not have a class. Green solves this
problem by allowing objects to have types. The static variables and methods
of a class are grouped into a classless class object that has a type. Then a

1 We consider it simple by the power it offers.
2 These protocols are some special commands that have the only duty of intercept-
ing object creation.

15

class object can be assigned to a variable, passed as a parameter, etc. The
integration of class objects into the type system is only possible because:

• objects have types;
• the compiler adds methods to each class object to make it a subtype of
AnyClassObject (and therefore a subtype of Any).

The use of classless class objects brings several benefits to Green: there is no
infinite regression of metaclasses, types are applied to both classes and objects,
and classes become first-class objects. Besides that, class objects are easy to
implement: they are just the single object of a hidden class. Note that a class
object can be used as a single object — an object of a class that has a single
instance (like Earth, for example).

In Green, a method show(any : Any) can accept anything as parameter: an
object of any class, any class object, and any basic value (2.71, 3, ’A’). The
basic value is first cast automatically to an object of its wrapper class. Then,
show(’A’) is transformed into show(Char.new(’A’)). The automatic casting
of basic values and the integration of class objects into the type system endows
Green with Smalltalk-like polymorphic power.

One of the most important innovations of Green is its Exception Handling
System (EHS). The EHS is original because it is object-oriented: exception
handling is encapsulated into throw methods of catch clauses. Therefore, ex-
ception handling can be reused, which is not so easy in conventional EHS. The
maintenance of exception handling in Green is not difficult because in general
the handling of a specific exception will be put in a single throw method (or
in a few methods of different catch classes). Changes in the handling can be
made by changing this method (or these few methods). Compare with conven-
tional EHS in which the handling of an exception is in catch clauses spread
throughout the code. It is easy in Green to handle an exception in exactly the
same way whenever it is thrown in any place of the program.

Green uncouples error detection, made by try blocks, from exception handling,
made by catch objects. We can change the catch objects at runtime, changing
dynamically error handling. This makes it possible to start with a simple
error handling which may easily and smoothly evolve to a more sophisticated
treatment.

Green uses object-oriented rules to check the correctness of exception sig-
naling. A statement “exception.throw(anException)” is legal only if
exception has a throw method that may accept anException as parame-
ter. The type of exception is a union of types of catch objects (parameters to
try blocks) and the type of the exception parameter of the method, if one
exists. To explain completely this subject is out of the scope of this paper. It
is discussed in length by Guimarães [11]. The important point to note is that

16

Green uses object-oriented rules in its exception system.

Exception classes may be subclassed as in other languages. The novelty in
Green is that catch classes may also be inherited. For example, a class could
inherit from CatchDateException redefining just one throw method. The
programmer can build hierarchies of catch classes tailoring exception handling.

At runtime, the program may inspect the stack of catch objects (parameters
to try blocks). It may also attach a shell (metaobject) to one of the catch
objects thus changing exception handling.

Green brings the object-oriented advantages to its exception handling system:
there may exist catch and exception hierarchies, polymorphism in exception
handling (by changing the catch objects), polymorphism with exception ob-
jects, and reuse of code for error handling. Besides that, the type system is
used for checking exception handling. The EHS is integrated in the language,
interplaying with other language features.

The Green metaobjects are called shells and have two main characteristics:
they are simple and efficient. Shells use a simple sintax and have a simple
semantics. They can be learnt in a few minutes, a contrast with more complex
metaobject protocols. Shells are also very efficient — a comparison of the per-
formance of shells with metaobjects of other languages is made by Guimarães
[9].

Green supports some features that are not fundamental to object-oriented
programming but that certainly makes programming easy and/or safe. These
features are assertions, standard class objects for I/O/memory/runtime sup-
port, and parameterized classes. Other small features of the language were not
discussed in this paper as casting made by methods (for example, “letter A

= char.cast(65);”), expanded variables (variables that are not pointers —
they obey value semantics), constructors of class objects, enumerated con-
stants, subclass section of a class, methods of the array classes, methods of
basic types, the standard exception and catch hierarchies, dynamic extensions
(to replace methods of all objects of a class), and the runtime model. All of
this can be found in the Green manual [10].

A Green compiler is available in the Internet [10]. It implements everything dis-
cussed in this paper but shells, expanded variables, and methods with variable
number of parameters. However, shells have been implemented by a previous
compiler.

Acknowledgments.

This work was partially financed by FAPESP under process number 99/13006-
8.

17

References

[1] America P, Linden F V D. A parallel object-oriented language with inheritance
and subtyping. In: Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). New York: ACM, 1990. p. 161-168.

[2] Bouraqadi-Saâdani N, Ledoux T, Rivard F. Safe metaclass programming.
In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). New York: ACM, 1998. p. 84-96.

[3] Brandt S, Schmidt R. Reflection in a statically typed and object-oriented
language — a meta-level interface for BETA. http://www.daimi.au.dk/~beta,
2003.

[4] Chiba S. Open C++ programmer’s guide. Technical Report 93-3, Department
of Information Science, University of Tokyo, Tokyo, Japan, 1993.

[5] Cointe P. Metaclasses are first class: the ObjVlisp model. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). New York:
ACM, 1987. p. 156-162

[6] Goldberg A, Robson D. Smalltalk-80: the language and its implementation.
Reading, MA: Addison-Wesley, 1983.

[7] Golm M. Design and implementation of a meta architecture for Java. Master’s
thesis. University of Erlangen-Nrnberg, 1997.

[8] Golm M, Kleinöder J. MetaXa and the future of reflection. UTCCP Report,
Center for Computational Physics, University of Tsukuba, Tsukuba, Japan, 1998.

[9] Guimarães J. Reflection for statically typed languages. In: European Conference
on Object-Oriented Programming (ECOOP). Berlin: Springer, 1998. p. 440-461.

[10] Guimarães J. The Green language.
http://www.dc.ufscar.br/~jose/green/green.htm, 2003.

[11] Guimarães J. The Green language exception system.
http://www.dc.ufscar.br/~jose/green/green.htm, 2003.

[12] Guimarães J. The
Green language type system. http://www.dc.ufscar.br/~jose/green/green.htm,
2003.

[13] Harris W. Contravariance for the rest of us. Journal of Object-Oriented
Programming 1991; 4(7):10-18.

[14] Ledoux T, Cointe P. Explicit metaclasses as a tool for improving the design of
class libraries. In: International Symposium on Object Technologies for Advanced
Software (ISOTAS). Berlin: Springer, 1996. p. 38-55.

[15] Meyer B. Eiffel: the language. New York: Prentice Hall, 1992.

18

[16] Niemeyer P, Peck J. Exploring Java. Second Edition. Sebastopol, CA: O’Reilly
& Associates, 1997.

[17] Raj R, Tempero E, Levy H, Black A, Hutchinson N, Jul E. Emerald: a
general-purpose programming language. Software: Practice and Experience 1991;
21(1):91-118.

[18] Rodriguez N, Ierusalimschy R, Rangel J. Types in School. SIGPLAN Notices
1993; 28(8):81-89.

[19] Stroustrup B. The C++ programming language. Second Edition. Reading, MA:
Addison Wesley, 1991.

Vitae

Guimarães, José de Oliveira: is an Associate Professor of Computer Science at
the Federal University of São Carlos (UFSCar), São Carlos-SP, Brazil. He re-
ceived a BSc, a MSc, and a PhD in Computer Science in 1989, 1992, and 1996,
respectively. His research interests include object-oriented programming, com-
putational reflection, compiler optimizations, and programming languages.

19

