
The Green Language Type System

José de Oliveira Guimarães

Campus da UFSCar, Rodovia João Leme dos Santos, Km 110 - SP-264, Sorocaba
- São Paulo, 18.052-780, Brazil

Abstract

A programming language that considers basic values and classes as objects brings
more opportunities of code reuse and it is easier to use than a language that does not
support this feature. However, popular statically-typed object-oriented languages do
not consider classes as first-class objects because this concept is difficult to integrate
with static type checking. They also do not consider basic values as objects for sake
of efficiency. This article presents the Green language type system which supports
classes as classless objects and offers a mechanism to treat basic values as objects.
The result is a reasonably simple type system which is statically typed and easy
to implement. It simplifies several other language mechanisms and prevents any
infinite regression of metaclasses.

Key words: object-oriented languages, Green, type system, polymorphism

1 Introduction

This paper introduces the type system of the Green language [1] [2], an object-
oriented and statically-typed language which supports garbage collection,
classes as first-class objects, introspective reflection, and run-time metaob-
jects called shells [3]. In Green, one class may be subtype of another without
being subclass of it.

Popular statically-typed object-oriented languages such as Eiffel [4], Java [5],
C# [6], and C++ [7] have type systems with two limitations. First, classes are
not objects. Second, polymorphism does not apply to basic values such as 31,

Email address: josedeoliveiraguimaraes@gmail.com, Phone: 55 15
3229-5973 (José de Oliveira Guimarães).

URL: http://www.dc.ufscar.br/~jose (José de Oliveira Guimarães).

Preprint submitted to Computer Languages, Systems and Structures30 September 2008

’A’, and 3.14159. That is, among classes integer, char, and real 1 there
is no common superclass that obeys reference semantics. There cannot be a
variable x such that “x = 31”, “x = ’A’”, and “x = 3.14159” are all legal
at the same time. As will be seen, Java, C#, and Green support automatic
conversions that simulates polymorphism with basic values.

Before going on, it is necessary to define some terms. An object is an aggre-
gate of functions (methods) and date (instance variables) which exists only at
runtime. A class describes the shape of its objects, their methods and instance
variables. A metaclass is the class of a class. It is a regular class which de-
scribes the methods and instance variables of another class. A first-class object
is an object that can be stored in variables, passed as parameter to a method,
or receive a message. For short, objects which are not first-class should not be
called objects, although sometimes they are. A field of a class is an instance
method or variable or a static method or variable. A field is called “member”
in C++.

1.1 Classes as Objects

We will now explain why it is important to have classes as objects. Statically
typed languages usually support static variables and methods or similar mech-
anism, such as once methods of Eiffel. 2 A static variable MaxX in a class Point
is a variable of the object representing class Point. Variable MaxX corresponds
to an instance variable of the metaclass of Point. Java, C#, and C++ sup-
port static fields, but they do not treat classes as first-class objects — a class
cannot be assigned to a variable, for example. This is a limitation as explained
by the following items.

• There are two kinds of methods and variables – static and non-static. This
is confusing to learn — static and non-static fields are declared in the same
place (the class) but they are used through different syntaxes and have
different meanings.

Class Point of Fig. 1 is an example in Java of a class with static and non-
static fields. It is immediately clear that two different concepts were put in
the same place, the class. Static method setMaxX, for example, cannot be
changed to

1 Each of these languages has its own classes for integers, characters, and real
numbers. Here we used the Green names for basic types.
2 Every call to a once method after the first one will return the same value as the
first call. Assume the method returns an object or value. Then, a once method plays
the rôle of a constant — it does not depend on the object that received the message.

2

public class Point {

public Point(int x, int y) {

if (x <= MaxX && y <= MaxY) {

this.x = x; this.y = y;

}

}

public int getX() { return this.x; }

public int getY() { return this.y; }

public void setX(int x) { if (x <= MaxX) this.x = x; }

public void setY(int y) { if (y <= MaxY) this.y = y; }

private int x, y;

static public int getMaxX() { return MaxX; }

static public int getMaxY() { return MaxY; }

static public void setMaxX(int new_MaxX) {

MaxX = new_MaxX;

}

static public void setMaxY(int new_MaxY) {

MaxY = new_MaxY;

}

static public Point getCenter() {

return new Point(0, 0);

}

static private int MaxX = 1024, MaxY = 768;

}

Fig. 1. An example of a Java class mixing static and non-static fields

static public void setMaxX(int MaxX) {

this.MaxX = MaxX;

}

There is no this pseudo-variable in static methods because no object re-
ceives message setMaxX. The syntax

Point.setMaxX(320);

just means that method setMaxX of Point should be called. It does not
mean that object Point receives message setMaxX(320). If this would be
the case, this inside setMaxX would refer to the object Point.

Instance variables x and y cannot be accessed in static methods because
there is no this. However, static variables MaxX and MaxY can be used inside
instance methods — an asymmetry beginners to the language find difficulty
to understand.

There is only one variable MaxX or MaxY at runtime. These variables are
shared by all instances of Point — they are much like global variables that
can be used only inside Point. However, there can be any number of Point
objects each one with its own x and y variables.

Another source of confusion is the combination of inheritance and static

3

methods and variables. Inheritance was designed to allow a class to inherit
instance methods and variables from another class. But in Java a subclass
inherits the static fields too. Static method setMaxX of class Point can be
accessed through a subclass PolarPoint of Point:

PolarPoint.setMaxX(320);

This mixes two different concepts and gives the impression that there is
another set of static fields to PolarPoint as happens with instance fields.
However, there is only one set of static fields in the program. In particular,
there is only one MaxX variable.

Yet another source of misunderstanding is the access of static fields using
variables. In Java, the code

Point p;

p.setMaxX(640);

is legal although it does not make sense.
In C++/Java, there is no constructor to initialize the static variables

because there is no object which corresponds to the static fields. Therefore,
the syntax for mechanisms to initialize static variables do not resemble
constructors — another syntax for doing the same thing, set variables. C#
employs a better syntax: a constructor for initializing static variables can
be declared by putting keyword static before a method that has the class
name, much like a normal constructor.

If classes were objects in Java/C++/C#, this could be used inside static
methods and would refer to the object representing the class. And classes
could be passed as parameters — there would be polymorphism with classes
too. A message send like “aClass.m()” would call a static method “m”
determined only at runtime, assuming aClass refer to a class.

• How can a metaobject be attached to a class to intercept message sends to its
static methods? A metaobject attached to an object intercepts all messages
sent to it. But a metaobject cannot be attached to a class because it is not an
object. Of course, one can design a special language mechanism that allows
a metaobject to be attached to a class. But these “class” metaobjects would
be different from regular metaobjects — static and non-static methods obey
different semantics and have different implementations.

A consequence of this is that a metaobject cannot be attached to a class
to control object creation. To see this, let us first explain object creation
in languages that consider classes as objects. A method called new may be
defined in a metaclass to create and return an object of the class. Since new

is defined in the metaclass, the class (considered as an object) has a new

method. So a message “new()” can be sent to the class to create a new
object of it. As an example, to create an object of class A we could write

a = A.new();

“A” used anywhere in a statement is a reference to the object that is the
class A. So, “A” in “A.new()” works as a variable that refers to the object
that is class A. Now we can attach a metaobject to A that intercepts new

messages, controlling object creation. To control object creation is as easy

4

as to intercept any message. This is not so easy in languages that do not
consider classes as objects.

• Unless classes are objects, no method can accept them as parameter. For
example, a deepClone method cannot accept a class as parameter and re-
turn a copy of it. A method to serialize 3 an object cannot accept a class
as parameter. The same applies to a method that makes its parameter per-
sistent. Or to a method showObject that shows information on its param-
eter on the screen. This method assumes all classes define a toString()

: String method that returns a string with the object data in a format
adequate for viewing. Unless classes are objects, they could not be showed
by showObject.

• An Introspective Reflection Library (IRL) has classes describing the pro-
gram structure: its classes, methods, method parameters, variables, etc. At
runtime, one can ask for the methods of an object or a class, for example.
If classes are not objects, there should be different methods for retrieving
information on regular objects and on classes. For example, information on
the set of methods of the object referred to by variable d could be obtained
using

s = d.getMethods();

Method getMethod would be inherited from the top-class hierarchy, usually
called Object (as in Smalltalk, C#, and Java). A similar syntax could be
used for classes:

s = Point.getMethods();

Here getMethods should be a static method. Since it is not inherited, it
should be added to all classes by the compiler — Green does something like
this. Unless the compiler adds these getMethods methods, there should be
a different mechanism for accessing information on the methods of the class
(when considered as an object). This is what most languages do.

Therefore, if classes are not objects, then objects and classes need separate
treatment by the IRL.

• Some operations belong to metaclasses or to classes considered as objects.
They do not refer to a specific class instance. They refer to general class
characteristics as “what is the maximum value of an integer?”, “ How many
precision digits does a real number offer?”, and “what is the date of today?”.
The existence of these operations prove that static methods/variables or
metaclass methods/variables are necessary — they should be allowed in
object-oriented languages.

Eiffel, Java, C#, and C++ do not consider classes as first-class objects. Beta
[8] [9] [10] does, but class variables and methods cannot be declared. It is as
if static class variables and methods could not be declared in Java, C#, or

3 Transform an object into a sequence of bytes that can be used to recreate the
object. Used to transfer objects through a network or store whole objects in the
hard disk.

5

C++. This restriction limits the usefulness of considering classes as objects.

A statically-typed object-oriented language could be designed to support
classes as first-class objects. Since classes are objects, they should have classes,
which we will call metaclasses (the class of a class). There are three main de-
sign possibilities:

(1) all classes share a common metaclass, say Metaclass, which is its own
class;

(2) each class has its own metaclass, which is also a class and therefore has a
metaclass;

(3) some classes (but not all) share a metaclass.

In option (1), Metaclass is its only class, a little bit confusing mechanism
which means that a class has information on itself. That does not cause any
recursion problem, however.

Option (2) may lead to a problem called “infinite regression of metaclasses”
which happens when the metaclass hierarchy never ends. That is, a class A has
a metaclass usually nameless but which we will call MA. Since MA is a class, it
has a metaclass MMA which has a metaclass MMMA, and so on. The hierarchy is
potentially infinite. Possibly the recursion ends in a common metaclass like in
option (1) and, therefore, there is not infinite regression. Option (3) is usually
used in conjunction with options (1) or (2).

In option (2), if there is infinite regression, it is necessary to create metaclasses
at runtime, on demand, a slow operation that is not reasonable in a statically-
typed language. It may be necessary to call the compiler to compile each
metaclass. The dynamic creation of classes is also harmful to some compiler
optimizations. It becomes more difficult to the compiler

• to inline methods;
• to replace a message send by a test with branches for each possible class of

the message receiver (thus eliminating a runtime search for a method);
• to optimize the use of memory by the method tables, if they are used. Some

compilers generate code for message sends using method tables, which are
arrays with pointers to methods. Each class has its table. Since many table
positions are empty (they do not point to methods), the tables can be packed
[11] at compile time. When a class is created at runtime, packing is more
difficult, which may be a problem if many classes are dynamically created.
These tables may be very large, as large as the number of different message
selectors of all program classes.

Considering the possibilities (1), (2), and (3), there is either a potentially
infinite number of metaclasses or the recursion ends in some place. For exam-
ple, Metaclass could be an object of itself. To understand the complexity of

6

Fig. 2. Inheritance and “instance of” relationships in an imaginary language

a model employing metaclasses, let us study the imaginary language whose
class hierarchy and “instance of” relationships are shown in Fig. 2.

In this language, it is difficult to measure the consequences of a modification
in a class to other classes that inherit from it or are objects of it. For example,
we can ask:

• what happens to Object if Metaclass is modified? The Object class is
an object of Metaclass. If Object is modified, by changes in Metaclass,
how these changes affect Metaclass, which is its subclass? If Metaclass is
affected, is Object changed again?

• what happens to Metaclass if Metaclass is changed? Metaclass is the
class of itself;

• what happens to Point class if Metaclass is modified? Metaclass is the
class of Point class and its superclass. Changes in Metaclass may be prop-
agated to Point class either by the relation “instance of” or “inheritance
from”. Or it may not be propagated at all;

• what was created first: Metaclass or its superclass, Object? The Object

class is Object of Metaclass!

A specialist in this language could answer rather easily these questions. How-
ever, regular programmers would get bogged in the intricacies of the argu-
ments.

A real language may differ from the imaginary language used above. It could
offer other inheritance/object relationships but all end up with uncommon,
to say the less, links among classes and objects. That makes it difficult to
understand the language.

One of the causes of confusion is the requirement “every class should inherit
directly or indirectly from Object”. But why is this requirement desirable in a

7

statically-typed object-oriented language? To reuse inherited code, the meth-
ods of Object, and to increase polymorphism. One can declare

var anObject : Object;

and make anObject refer to any kind of object. Variable anObject may re-
fer to objects of all subclasses of Object, its declared type, which includes
everything: every regular object, every class, and every metaclass.

We consider that a subtype is always a subclass. We will see Green gets rid
of inheritance in the subtype definition, thus allowing a variable of declared
type Any refer to any object, including classes (which are objects).

The conclusion of the above discussion is that, to support classes as first-
class objects that have classes, one should either create an infinite chain of
metaclasses or design complex instance and inheritance relationships among
the classes. This may be necessary in a dynamically-typed language but it
would not be reasonable in a statically-typed language. We will soon see that
the Green classes are objects, which themselves do not have classes, which
avoids the problems discussed above.

This ends our discussion of the reasons for supporting classes as first-class
objects and the related problems in statically-typed languages. Let us now
return to the second limitation of some languages: the non-applicability of
polymorphism to basic values.

1.2 Polymorphism and Basic Values

For the sake of efficiency, C++ and Eiffel use value semantics for basic values
such as characters, integers, and reals. This means that values such as 31,
’A’, and 3.14 are not objects. They could not be passed as parameters to a
method like

write(anObject : Object)

if we consider Object as the superclass of every other class. To pass a basic
value to write, it is necessary to wrap it in an object and then pass this object
to write. Or method write must be overloaded — one write method should
be created for every basic type. Anyway, different treatments are necessary for
objects and basic values. As will be seen, one can define a write method in
Green that accepts everything as parameter: an object, a class object, or any
basic value.

In the previous discussion, we were not concerned with known holes in the
type systems of C++, Java, Eiffel, and Beta. The discussion focused on deeper
characteristics of the type systems of these languages.

The remaining of this paper exposes the innovative features of the Green

8

class Point

// the constructor appears before the public section

proc init(x, y : integer)

begin

if x <= Point.MaxX and y <= Point.MaxY then

begin

self.x = x;

self.y = y;

end

end

public:

/* this is a comment.

the bodies of the following methods are not shown */

proc getX() : integer

proc setX(x : integer)

proc getY() : integer

proc setY(y : integer)

private:

/* instance variables */

var x, y : integer;

end

Fig. 3. Syntax for class Point

type system and compares them to similar features of other statically-typed
languages. The article is organized as follows. Section 2 exposes the Green type
system: subtyping, classes as objects, the class hierarchy, and basic classes.
Metaobjects of the language are described in Section 3. Section 4 concludes.

2 The Green Type System

Green is statically-typed and has a type system in which subtyping is different
from subclassing. Every subclass is a subtype and there may be subtypes that
are not subclasses. Before describing the details, let us show a bit of Green
syntax. A class Point is declared as shown in Fig. 3. This class corresponds
to the Point class in Java, without the static fields, given as example in
Fig. 1. There are public and private sections like in other languages. The
public section contains only methods, which are declared with the keyword
proc. The class constructor is always a method called init. In general, Green
follows a Pascal-like syntax with a bit of C.

9

2.1 Types and Subtypes

The signature of a method is composed of its name, return value type (if it
returns a value), and parameter types (in that order). The type of a class
is the set of signatures of its public methods. Methods with name init are
constructors and are not considered in the type (this will be explained later).
As an example, the type of class Point of Fig. 3 is

{ getX() : integer, setX(integer),

getY() : integer, setY(integer), ... }

in which { and } delimit the set as usual. The “...” represents the signatures of
the inherited methods. Since Point does not explicitly inherit from any class,
it is forced to inherit from class AnyClass.

A type S is subtype of a type T if S has at least all the signatures of T. That
is, T ⊂ S. A method of a subtype should have the same argument types and
return value type as the supertype method with the same name. The covariant
and contravariant rules [12] do not apply. This definition of subtyping is used
to check assignments, which includes parameter passing. An assignment of the
kind

aa = bb;

is legal if the declared class of bb is subtype of the declared class of aa. For
short, we say “class B is subtype of class A” instead of the longer “the type of
class B is subtype of the type of class A”.

Whenever a class B inherits from a class A, B will have at least all methods of A,
implying the type of B is subtype of the type of A. Every subclass is a subtype
and there may be subtypes that are not subclasses. The only requirement is
that the subtype has at least all method signatures of the supertype.

Subtyping may substitute multiple inheritance in some situations. Green only
supports single inheritance.

Constructors, the init methods, are not inherited and they are not part of
the type of the class. Why? Because in general constructors are linked to
the implementation of the particular class they are in. They usually accept
parameters that are the initial values of some instance variables. Constructors
parameters are in general not directly related to the abstraction the class
represents. For example, a class Queue may have a constructor init(max :

integer) in which max is the maximum number of Queue elements. Very
probably class Queue uses an array to store its elements. A subtype MyQueue of
Queue may use a linked list and its constructor may be init(). If constructors
were part of the type, MyQueue would not be subtype of Queue. But it should.

The language supports abstract classes which may play the role of types (Java
interfaces) of the language. An abstract class may have abstract methods,

10

which are bodyless. One cannot create objects of abstract classes.

The definitions of type and subtype have a very important property: they do
not use the concept of inheritance. They only depend on the set of methods
of the class or classes involved. As will be seen, an object in Green can have a
type too, even though it exists only at runtime. The type of an object is the
set of signatures of its public methods. Then the type of an object may be
subtype of the type of a class. This feature allows a classless object be used
where a regular object (that has a class) is expected. More about that will be
presented soon.

The Green definition of subtyping is not new. It has been used in POOL-I
[13], School [14], and Emerald [15]. Even though Emerald does not support
inheritance. All of these languages, in slightly different forms, consider types
as set of method signatures and consider class B subtype of class A whenever
the type of A is subset of the type of B.

2.2 Class Objects

Fig. 3 shows a class Point which specifies the methods and instance variables
objects of Point will have. Fig. 4 shows the declaration of an object that is
the class Point — it has the methods and variables the class, as an object, has
at runtime. In a program file, the code of Fig. 3 should follow that of Fig. 4.
Both should be put in a file called “Point.g”.

Objects like Point are called class objects; that is, objects that are classes.
They play the role of metaclasses of other languages, although with much less
responsibilities.

Class Point of Fig. 3 declares instance methods and variables which corre-
sponds to the non-static fields of class Point in Java of Fig. 1.

Class object Point of Fig. 4 declares the class methods and variables which
corresponds to the static fields of class Point in Java of Fig. 1.

The declaration of Fig. 4 is much like the declaration of an object in delegation
or prototyped-based languages [16]. The word “Point” has two uses in a Green
program:

• when used in a variable or parameter declaration as “var p : Point”, it
means “class Point”, as defined in Fig. 3;

• when used in every other place, “Point” works as a constant variable that
refers to the object described in Fig. 4. Therefore, Point can be stored in
variables, passed as parameter, etc. That makes classes first-class objects

11

object Point

public:

proc getMaxX() : integer

begin

return MaxX; // it could be self.MaxX

end

proc getMaxY() : integer

begin

return self.MaxY; // it could be just MaxY

end

proc setMaxX(MaxX : integer)

begin

self.MaxX = MaxX;

end

proc setMaxY(MaxY : integer)

begin

self.MaxY = MaxY;

end

proc getCenter() : Point

begin

return Point.new(0, 0);

end

private:

var MaxX : integer = 1024,

MaxY : integer = 768;

end

Fig. 4. Object representing class Point

in Green. As an example, one can send a message to Point:
max = Point.getMaxX();

The syntax for using a class in a variable declaration or in a method call is
the same as in C#/C++/Java. However, in Green, “Point.getMaxX()” is a
real message send.

A message send “p.getX()” calls a method getX and inside it the special
variable self refers to the object that received the message — the object
referred to by “p”. In “Point.getMaxX()”, method getMaxX is called and
again self may be used to refer to the object that received the message,
Point. Green uses the same syntax for regular and class (static) methods.

12

Memory for a class object is created before the program starts running. Im-
mediately after the creation, a parameterless method init of the class object
is called, if one exists. This method works like the constructor of a class — it
should be used to initialize the class-object variables.

Compare this with the static fields of a class, which correspond to class ob-
jects. Static variables are created when the class is loaded in Java or when
the program starts running in C++. In these languages, there are more than
one mechanism to initialize static variables and none of them resembles con-
structors, which are used to initialize instance variables. Green supports init
constructors for both classes and class objects.

As in delegation-based languages, class objects may initialize variables in their
declaration as is made with MaxX and MaxY in the example of Fig. 4. Initial-
ization of class instance variables is illegal in Green because a class is just a
type declaration — there is no memory associated to it.

Although class objects are similar to metaclasses, they do not have classes.
Therefore, there is no class of a class, class of a class of a class, and so on.
Then there is no infinite regression problem. However, a class object has a
type, which is just the set of its public method signatures. Therefore class
objects are type-checked as other objects. The type of class object Point is
obtained using the compile-time function type:

var aClass : type(Point);

aClass = Point;

/* print Point.getMaxX() */

Out.writeln(aClass.getMaxX());

Variable aClass can refer to objects whose types are subtypes of class object
Point, which includes class object Point. Then “aClass = Point” is correctly
typed.

When someone wants a variable to refer to a subtype of class Point, she or
he should declare it as

var p : Point

When the variable should refer to a subtype of class object Point, it should
be declared as

var p : type(Point)

Therefore the type of a class and its class objects are available in Green.
Function type gives access to a type of an object, in fact, the type of a class
object. Without it, the type of a class object would be inaccessible to the
programmer at compile-time. Section 3 shows an example in which function
type is almost unavoidable.

13

There is only one class object Point in the whole program and it is accessed
by a constant variable called Point. Methods of class Point (Fig. 3) can use
variable Point to call methods of the class object Point and to access its
private variables MaxX and MaxY. No other class can access the private part
of class object Point and this class object cannot access the private part of
class-Point objects.

2.2.1 Relationships between a Class and its Class Object

In C#/C++/Java, objects are created using operator new:
p = new Point(0, 0);

After keyword new there should appear the class name and real parameters.
This use is legal only when the class declares a constructor which accepts the
real parameters. Then the use of operator new depends on the class declaration,
in particular, on the declarations of constructors.

Green employs something similar. Class constructors are always named init.
For each method init in class Point, 4 the compiler adds a method new to
class object Point. The new method has the same parameters as the init

method of class Point and returns a class-Point object.

When the Green compiler reaches the init method of class Point of Fig. 3,
it adds the following method to class object Point:

proc new() : Point

begin

var p : Point;

p = newly allocated memory large enough for a Point object;

// if new had parameters, they would be

// passed to method init

p.init();

return p;

end

Therefore Green uses a new method of the class object to create objects of
the class. This means creation of objects is made through an object-oriented
concept, message send. Contrast this with C++, C#, Java, and Eiffel that
use operators for that.

A class object PolarPoint is unrelated to class object Point even if
PolarPoint inherits from Point. That means methods of class object Point

4 There could be more than one method init because Green supports method
overloading — there may be more than one method with the same name provided
the number and parameter types are different.

14

cannot be called through PolarPoint (as in PolarPoint.getMaxX()) and
class PolarPoint cannot access the private methods and variables of class ob-
ject Point. In particular, new methods of class object Point cannot be called
using PolarPoint.

A class object provides variables shared by all class instances and supplies
methods new for instance creation. None of these services should be “inher-
ited” by a class object of a subclass as PolarPoint. As explained before,
constructors should not be inherited. And to allow a class to access the vari-
ables of the class object of its superclass breaks encapsulation. One cannot
change the class-object variables of a class because this may damage the code
of an undetermined number of subclasses spread throughout the program.

2.2.2 On responsibilities

Class objects have two main responsibilities: to create class instances through
new and to provide variables (like MaxX and MaxY) shared by all class instances
(Fig. 4).

Class objects have some of the responsibilities of metaclasses [17] [18] [19] [20]
of dynamically-typed languages. Metaclasses, in some languages, have much
more duties. A metaclass may specify that its object, a class, is abstract or
that it cannot be subclassed. A metaclass may automatically provide get/set
methods for all instance variables declared in the class that is the metaclass
instance. Green will allow the programmer to change some implementation
characteristics of classes through a yet-to-be-described compile-time metaob-
ject protocol (MOP). Note that a statically-typed language could hardly re-
main statically-typed and efficient if it provides all functionalities of meta-
classes of dynamically-typed languages such as ObjVLisp [18] and ClassTalk
[20]. So we chose to move some responsibilities of metaclasses to the compile-
time metaobject protocol. We hope the MOP and class objects together will
have most of the power of metaclasses of dynamic languages.

2.3 The Class Hierarchy

Class AnyClass is inherited by any class that does not explicitly inherit from
another class. So, class Point of Fig. 3 inherits from AnyClass, which inherits
from Any.

The Green class hierarchy is shown in Fig. 5 which also uses class Point and
a char array to better present the inheritance relationship among the classes.
In this figure, a class B below and to the right of a class A means B inherits

15

Any

AnyClass

Point

AnyArray

array(char)[]

AnyClassArray

array(Point)[]

AnyClassObject

Fig. 5. The Green class hierarchy

from A. Then Point and AnyArray are subclasses of AnyClass. Class object
Point is not shown in this Fig.. It is a subtype of AnyClassObject.

Class Any defines some generic methods such as

equals(other : Any) : boolean

shallowClone() : Any

isObjectOf(aClass : AnyClassObject) : boolean

among others. Method isObjectOf takes a class object as parameter and
returns true if the class of the message receiver is class aClass. If the receiver
is a class object, false is always returned. As an example, the expression

(Point.new(0, 0)).isObjectOf(Point)

is true.

All class-Any methods are applicable to any object, even if it does not have a
class (it is a class object). A message isObjectOf always returns false when
sent to a class object.

Class AnyClass, inherited by all regular 5 classes, defines method
getClassObject() : AnyClassObject

which returns the class object of the object. So, if p is declared as
var p : Point = Point.new();

the expression
p.getClassObject() == Point

will always be true.

The type of a class object is the set of its public method signatures. Since
a class object is an object, that means objects in Green have types. Class
AnyClassObject is supertype of the type of every class object. Since it is
subclass of Any, the type of every class object is a subtype of Any. For short,
we say “every class object is a subtype of Any”. This means that every class
object defines the Any methods equals, shallowClone, and so on. But who
defines these methods in every class object? They are not inherited since class

5 Every class but the basic classes char, real, boolean, etc.

16

objects are objects, not classes. The answer is: the compiler. It automatically
adds all Any and AnyClassObject methods to every class object.

The scheme presented above consists of:

(a) a carefully designed class hierarchy. Methods available to every object,
including class objects, were put in class Any. Methods available to every
object of a class were put in class AnyClass. Methods that make sense only
to class objects were put in class AnyClassObject;

(b) the addition of methods, by the compiler, to every class object. The meth-
ods added are just those of class AnyClassObject and its superclass Any.
Therefore any class object has all the methods of AnyClassObject being a
subtype of it;

(c) every programmer-defined or regular class inherits directly or indirectly
from AnyClass and therefore is a subtype of it.

This scheme makes every object a subtype of Any. If the object is a class
object, it is also a subtype of AnyClassObject. Therefore class objects, which
represents the metaclasses in Green, are integrated in the type system. We are
unaware of any other statically-type object-oriented language that achieves
that. In general the metaclass responsibilities are left to static variables and
methods which are not integrated into the type system. That is, the set of
static variables and methods do not compose an object which has a type. The
relationship between class objects and the type system is only possible because
of two Green novelties:

(1) classes are classless objects which have types;
(2) methods are added to class objects to make them subtypes of

AnyClassObject and Any. Then both class objects and normal objects
have a common supertype, Any.

2.4 The Basic Classes

Green supports the basic classes char, boolean, byte, integer, long, real,
and double. These classes inherit from class AnyValue which does not inherit
from Any. It was necessary to create class AnyValue because basic classes
(which inherit from AnyValue) and regular classes (which inherit from Any)
differ in two important points:

• basic classes use value semantics and regular classes use reference semantics;
• regular classes can be subclassed but basic classes cannot, for efficiency

reasons.

17

AnyValue

integer

Any

AnyClass

Point

Integer

AnyClassObject

class object Point (subtype)

Fig. 6. The Green class hierarchy with basic types

A variable whose type is a regular class is much like a pointer to a dynamically-
allocated object. And a basic-class value is never dynamically allocated.

Class AnyValue has methods for getting information on the object like
“getClassInfo” which returns an object with all the class information. So
one could write

var ci : ClassInfo = 5.getClassInfo();

to get information on integers. Another method of AnyValue is toString for
converting a basic value to a string.

The class objects of basic classes have cast methods for type conversions. For
example,

var i : integer = char.cast(’A’);

assigns 65, the ASCII of ’A’, to i. These class objects have other methods
such as for getting the size of basic values and for getting the minimum and
maximum values of the class.

Following the conventions of showing the relationships class/subclass of Fig. 5,
Fig. 6 shows more of the Green class hierarchy. Only the integer basic type
is shown in the Fig..

There are wrapper classes, that obey reference semantics, for each of the basic
classes. For example, there is a wrapper class Integer that inherits from
AnyClass (not AnyValue). This class just holds an integer value and has a
get method for getting it. The value is given at the creation of the Integer

object and cannot be changed.

This can be implemented in any language. The new point in Green is that
automatic conversion is provided between a wrapper-class object and its
corresponding value. So, if i and I are declared as integer and Integer,
respectively, the following code is legal.

I = 1;

i = 5*I + i*I;

++I;

18

A wrapper-class object can be used whenever the corresponding basic-class
value is expected, and vice-versa. This mechanism allows one to program as
if using a pure object-oriented language, in which everything is an object. It
gives great freedom to the programmer. The flexibility of this mechanism is
illustrated by a method

proc write(any : Any)

Everything can be passed as parameter: a basic-class value (5, ’A’, 3.14), a
class object, or a regular object.

In language C# [6], a basic value is implicitly converted to the type object

(the top-level class) whenever necessary:
object anObject = 1; // correct !

This mechanism is called boxing. Unboxing should be made by the casting
operator ():

int anInt = (int) anObject;

Green employs a more general and complex mechanism in which automatic
conversions are made even within expressions and explicit casts are not de-
manded.

Note that the new version of Java [5] has a mechanism also called boxing that
has exactly the same functionalities as the automatic conversions of Green.

3 Metaobjects

Green supports run-time metaobjects called shells [3] and has an Introspec-
tive Reflection Library (IRL). A metaobject attached to an object intercepts
all messages sent to it. It can redirect the message to another object, check
parameters, send the message to the original receiver, and so on. A shell class

shell class Control(type(Planet))

public:

proc new() : Planet

/* user-defined body is not described */

end

is a metaobject class in Green. A metaobject of Control may be attached to
objects which are subtypes of type(Planet), which obviously includes class
object Planet. Remember type(Planet) is the type of class object Planet,
it is the set of all public method signatures of class object Planet. Shell class
Control can define only public methods of type(Planet). A metaobject of
shell class Control is attached to class object Planet, thus controlling its
behavior, by the following statement:

Meta.attachShell(Planet, Control.new())

19

identifier “Planet” -

�

�

�

s
h
e
l
l new

-

'

&

$

%
object
Planet

new

Fig. 7. Shell intercepting method new that creates an object. In the code, object
Planet is referenced by identifier “Planet”.

In the Green code, identifier “Planet” refers to the class object which we also
call Planet. That is: in the code, “Planet” is a pseudo-variable that points to
the class object Planet. After the shell attachment, identifier Planet refers
to the shell object that refers to the class object Planet — see Fig. 7. In this
figure, arrows mean references between objects.

After the attachment, any message new sent to class object Planet will be in-
tercepted by the metaobject. Method new of the shell will be executed instead
of method new of class object Planet. Therefore, in an object creation

p = Planet.new();

method new of the shell will be called — identifier Planet in the line above
in fact refers now to the shell object. Note that this shell does not intercept
all message sends to class object Planet. It only intercepts new messages.

This is one more advantage of defining classes as classless objects. No special
metaobject protocol is necessary in order to intercept the very simple oper-
ation of object creation. The compile-time function type is fundamental in
order to control object creation through metaobjects. Without it, the exam-
ple above would be much more complex. We should have to create an abstract
class, say TypePlanet, to replace type(Planet) in the declaration of shell
class Control. This class should declare one abstract method for each public
method of class object Planet. And all methods of AnyClass should be added
to class object Planet. Only in this way TypePlanet would be a supertype of
class object Planet and then a Control shell could be attached to it.

Open C++ 1.2 [21], Beta [8], and MetaXa 6 [22] [23] are statically-typed
object-oriented languages that support metaobjects. In these languages, the
creation of an object may be intercepted by using special metaobject protocols.
Compare this to Green in which no protocol is necessary: one just has to attach
a shell to the class object. The shell should define a new method. Object
creation in Open C++ and MetaXa are more difficult to deal with than in
Green because the former languages do not consider classes as first-class and
typed objects. Beta does consider classes as first-class values but does not
provide a new method to be intercepted.

6 MetaXa is a Java extension that supports metaobjects.

20

4 Conclusion

Green does simulate the property “a basic value is an object” without giving
up efficiency or making the language too complex. It just makes automatic
casting between wrapper objects and basic values, a simple trick. There is
loss of efficiency when, for example, an integer is converted to Integer or
vice-versa. But this was an option of the programmer to make the code more
readable or polymorphic.

Green considers classes as classless objects thus eliminating the need for meta-
classes and complex hierarchies. Subtyping is not tied to subclassing. A sub-
type only needs to have all supertype method signatures. This makes it pos-
sible to type objects, since inheritance is not used in the subtype definition.
Class objects have types and their use can be type-checked. The use of sub-
typing with classless class objects is the most important innovation of the
Green type system. This mechanism made simpler or more generic most of
the language features. It:

• eliminates the infinite regression problem since class objects are classless.
There is no metaclass, no class Object which is superclass of its own meta-
class, no strange “inheritance from” and “instance of” relationships;

• provides a simple type system since the definitions of type and subtype are
also used with objects;

• makes the class hierarchy relatively simple. The top classes are four:
AnyValue, Any, AnyClass, and AnyClassObject. Every basic class (char,
integer, ...) is subclass of AnyValue. AnyClass is superclass of every user-
defined class and AnyClassObject is supertype of every class object. Both
classes are subclasses of Any. Although there are four top classes, the other
classes relate to them by the normal subclass and subtype relationships,
which are easy to understand;

• allows one to control object creation through metaobjects without any spe-
cial language support;

• makes Green support some of the facilities of prototype-based languages
such as one-of-a-kind object and less abstract programming. After all, class
objects are concrete objects which are live during all runtime;

• can be easily implemented: a class object is much like the single object
of a hidden class. In fact, in our compiler this hidden class inherits from
AnyClassObject;

• makes uniform the declaration of instance and class (static) methods. In
both, self refers to the object that received the message. The name of
method “init” is used for both a class constructor and a class object con-
structor;

• allows the programmer to define methods or constants in a class object and
use them without creating an object. This is important for methods like

21

writeln of class object Out for standard output and In for input. To output
a variable is as easy as “Out.writeln(i)”. This solution does not demand
public global variables like cin and cout of C++ or public static variables
like out of class System in Java. Green does not need to allow either global
variables or public instance variables in order to supply globally accessible
data like In and Out.

The concept of object is the easiest to learn in object-oriented programming.
The class concept is a little more difficult since classes are not entities that will
be alive at run time with which the user program can interact. Metaclasses
are even more difficult to grasp because they are in an abstraction level above
classes. And their existence usually requires relationships among classes, both
subclass of and instance of, that are difficult to understand. The simplicity
of the Green type system comes from putting the easiest to learn and more
concrete concept, that of the object, in place of the more difficult concept,
that of metaclass.

Even though class objects do not have all features of metaclasses of some
dynamically-typed languages, they offer the services expected in a statically-
typed language. The missing features, however, will hopefully be added to a
compile-time metaobject protocol.

The Green object-oriented exception handling system [24] is a lengthy subject
which could not be discussed in this paper. The Green exception system is an
object-oriented version of the exception system of Java/C#/C++. Language
Java has the most safe system of the three. Its system has specific rules for

• exception signalling with throw. Using the class of the thrown object, the
compiler checks if the exception will be caught by some catch clause;

• exception declaration: in the method header one should declare the excep-
tions the method may throw.

These rules, in Java, prevent run-time errors. Green, instead of using catch
clauses after a try block, groups the code of these clauses in an object that is
attached to the try statement. Each catch clause corresponds to a method of
the object (all of them have the name “throw”). This object is responsible for
the error treatment of that try block. An exception is thrown by a statement
“exception.throw(anObj)” in which exception is a special object. In this
way we replace specific rules for the exception system by object-oriented rules
since the exceptions are treated by an object and thrown by an object. In
Green, we can build class hierarchies for error treatment, the Introspective
Reflection Library can be used to discover information on the exception system
(more than in other languages), metaobjects can modify the error treatment of
a try block, and the object attached to a try block can be replaced dynamically.
Then the exception system does not need specific rules — it obeys those of

22

the type system.

All the Green features presented in this paper, but metaobjects, are supported
by the Green compiler [1] (metaobjects have been implemented by an old com-
piler). The compiler is freely available, including its source code (in Java) and
the libraries. Guimarães [25] discusses some implementations details of this
compiler, including code generation to Java. Green classes are translated to
Java classes although this is apparently impossible since the subtype definition
of Green is more general than that of java (a subtype in Java is a subtype in
Green but the converse is not true). Papers [25] [26] explain how the Green
type system can be simulated in Java.

Acknowledgments. This research was partially financed by FAPESP under
process number 99/13006-8. I thank Ole Madsen for answering some questions
on the BETA language and the referees for many important comments relating
the clarity of the paper.

References

[1] J. Guimarães, The Green language,
http://www.dc.ufscar.br/~jose/green/green.htm, 2004.

[2] J. Guimarães, The Green language, Computer Languages, Systems, & Structures,
32 (2006) 203-215.

[3] J. Guimarães, Reflection for statically-typed languages, in: European Conference
on Object-Oriented Programming (ECOOP), 440-461, 1998.

[4] B. Meyer, Eiffel: The Language, Prentice Hall, New York, 1992.

[5] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, Third
edition, Prentice Hall PTR, 2005. Available at
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf.

[6] ECMA, C# Language Specification, 4 th edition, June 2006.
Available at http://www.ecma-international.org/publications/standards/Ecma-
334.htm, 2007.

[7] B. Stroustrup, The C++ programming language, Second edition, Addison
Wesley, Reading, MA, 1991.

[8] S. Brandt, R. Schmidt, Reflection in a statically typed and object-oriented
language — a meta-level interface for BETA, http://www.daimi.au.dk/~beta,
2003.

[9] S. Brandt, J.L. Knudsen, Generalising the BETA type system, in:European
Conference on Object-Oriented Programming (ECOOP), 421-448, 1996.

23

[10] J.L. Knudsen, The Beta home page, http://www.daimi.au.dk/~beta, 2003.

[11] K. Driesen, U. Hölzle, Minimizing row displacement dispatch tables,
in:Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM, New York, 141-155, 1995.

[12] W. Harris, Contravariance for the rest of us, Journal of Object-Oriented
Programming 4 (1991) 10-18.

[13] P. America, F. V. D. Linden, A parallel object-oriented language with
inheritance and subtyping, in: Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM, New York, 161-168,
1991.

[14] N. Rodriguez, R. Ierusalimschy, J. Rangel, Types in School, SIGPLAN Notices
28 (1993) 81-89.

[15] R. Raj, E. Tempero, H. Levy, A. Black, N. Hutchinson, E. Jul, Emerald: a
general-purpose programming language, Software: Practice and Experience 21
(1991) 91-118.

[16] R.B. Smith, Prototype-based languages (panel): object lessons from class-
free programming, in:Proceedings of Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), ACM, New York, 102-112, 1994.

[17] N. Bouraqadi-Saâdani, T. Ledoux, F. Rivard, Safe metaclass programming,
in: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM, New York, 84-96, 1998.

[18] P. Cointe, Metaclasses are first class: the ObjVlisp model, in: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM, New
York, 156-162, 1997.

[19] A. Goldberg, D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, MA, 1983.

[20] T. Ledoux, P. Cointe, Explicit metaclasses as a tool for improving the design of
class libraries, in: International Symposium on Object Technologies for Advanced
Software (ISOTAS), Springer, Berlin, 38-55, 1996.

[21] S. Chiba, Open C++ programmer’s guide, Technical Report 93-3, Department
of Information Science, University of Tokyo, Tokyo, Japan, 1993.

[22] M. Golm, Design and implementation of a meta architecture for Java, Master’s
Thesis, University of Erlangen-Nurnberg, 1997.

[23] M. Golm, J. Kleinöder, MetaXa and the future of reflection, UTCCP Report,
Center for Computational Physics, University of Tsukuba, Tsukuba, Japan, 1998.

[24] J. Guimarães, The Green language exception system, The Computer Journal
47 (2004) 651-661.

[25] J. Guimarães, Experiences in building a compiler for an object-oriented
language, SIGPLAN Notices 38 (2003) 25-33.

24

[26] J. Guimarães, On Translation between Object-Oriented Languages. Available
at
http://www.dc.ufscar.br/~jose/green/Articles.htm

Vitae

José de Oliveira Guimarães is a Professor of Computer Science at the Federal
University of São Carlos (UFSCar), Campus Sorocaba-SP, Brazil. He received
a BSc, a MSc, and a PhD in Computer Science in 1989, 1992, and 1996, respec-
tively. His research interests include object-oriented programming, computa-
tional reflection, compiler optimizations, programming languages, complexity
classes, quantum computing, and mathematical logic (mainly computability).

25

