

1

R-Java: A Reflective Java Extension

Elisa Tomioka, José de Oliveira Guimarães, Antonio Francisco do Prado

Departamento de Computação, UFSCar, São Carlos, SP, 13565-905, Brazil

email: {elisa, jose, prado}@dc.ufscar.br

Abstract. Java has been largely used for Internet and distributed
programming. Java is object-oriented, reasonably simple, and portable.
However, an important concept is missing in this language: metaobjects. A
metaobject intercepts messages sent to the object to which it is attached
allowing a programmer to modify the behavior of existent code with a few
changes in the source code. This article presents a Java extension that
supports a kind of metaobjects called shells which are simple, statically typed,
and efficient. They fit nicely in the Java paradigm of simplicity and safety.
Shells are type safe and demand few changes in the syntax and in the compiler.
In order to implement shells, it is necessary either to use a native method or to
add an instruction to the Java Virtual Machine.

1 Introduction

Java [9] has been widely used as a programming language in the World Wide Web. It is
reasonably simple, object-oriented, portable, and offers support for distributed applications.
The last two features make Java ideal to be used in the WWW which is composed by
different machines and operating systems spread throughout the planet. The language
portability allows a single program to run in different platforms without changing its behavior.
The distributed support allows programs in different machines on the Web to cooperate with
each other.

 Although Java is object-oriented and has all the flexibility of this paradigm, there is one
concept missing in this language: behavioral reflection. Reflection is the ability of a program to
examine its own structure (structural or introspective reflection) or to change its own
computation (behavioral reflection). A language that supports introspective reflection allows a
program to discover the class of an object, to examine the methods of this class, the parameter
types of each method, and so on. Introspective reflection is already supported by Java through
Java Core Reflection [16]. Behavioral reflection takes place when a program changes its own
behavior. The program may insert (remove) instance variables and methods into classes,
change the inheritance hierarchy, and modify the method look-up algorithm for a single object
or for the entire program.

 A metaobject is an object that intercepts messages sent to another object thus
controlling its behavior. When a message is sent to an object Q, the metaobject attached to it

2

can execute its own code, redirect the message to another object, or send the message to
object Q. Since metaobjects do change the method look-up for a single object, they
implement behavioral reflection.

 Metaobjects compose a software layer called the meta-level which controls the
program behavior. The meta-level does not deal directly with the program requirements. It
just helps the program to reach its goals. The separation of domains between program and
meta-level produces programs easier to modify and mantain. Deep changes in the program
behavior can be made by small changes in the meta-level.

 Metaobjects can be used to monitor classes and objects, debug a single object at run-
time, check the parameters passed to object methods, make the implementation of design
patterns [5] easier [11], implement fault tolerance [19], object distribution, and parallelism
transparently.

 When a metaobject intercepts a message sent to the object it controls, it can redirect
the message to another object in another machine. That makes it easy to distribute objects
through different platforms. The object that sends the message may not know that the method
will be executed in another machine: the distribution is transparent.

 Dynamic shells [12] are an efficient, statically typed, and simple kind of metaobjects
initially designed for the Green Language [13]. Because of these features we added dynamic
shells to Java creating an extension called R-Java (from Reflective Java). The philosophy of
simplicity and safety of Java is preserved in this language extension.

2 Dynamic Shells

Dynamic shells are a simple kind of metaobjects. A shell can be attached to a normal object to
intercept messages sent to the object.

Figure 1 shows a normal object Q, represented by a circle, that was initially referenced by
variable s. This figure shows also a shell F, represented by a rounded rectangle, attached to
object Q. After the attachment, variable s, like any other reference to object Q, will refer to
shell F. This figure only presents the concepts of shells: it is not intended to explain how shells
are implemented.

QFs

Figura 1: Shell F attached to object Q

 The class of shell F can only define methods with the same interface as the methods of
Q class. If F class defines method m, this method will be executed when a message m is sent
to object Q. But if F class does not define a method m, method m of Q will be executed. If
object Q knows how to respond to a message m, so will object Q attached to shell F. This
means an object with an attached shell knows how to respond to the same set of messages as

3

the object alone. Then the object type is not modified by shell attachment and no type error is
introduced by shells.

Messages sent to self in Q methods will be intercepted by the shell. So shells are
unlike wrapper classes [5] which compose a layer that just forwards the messages to the
object. In wrapper classes the self reference is not maintained. In shells, it is.

Message sends to super inside Q methods are not intercepted. A message send to
super is a message send to self in which the method to be executed at run time is found
at compile time in a search that begins at the superclass. Since the method is found at compile
time, no interception at run time by the shell is possible.

A shell may have instance variables to keep information about the object to which it is
attached. The shell instance variables can only be manipulated by shell methods. The access to
these variables will be faster if the class of the object to which the shell is attached is reflective.
A reflective class is declared in R-Java by putting the class modifier reflective before the
class name.

 An example of reflective and shell classes is shown in Figure 2. Class Window has a
method draw which draws a window in the screen. Note this class was declared as a
reflective class.

reflective class Window {
 ...
 public void draw() { ... }
 }

shell class Border (Window) {
 private void drawBorder() { ... }
 public void draw() {
 /* draws a border */
 this.drawBorder();
 /* draws the window */
 super.draw();
 }
 }

Figura 2: A dynamic shell class declaration

 Shell class Border was declared using the class modifier shell. After the shell class
name there should appear the base class name between parentheses (Window in this
example). So a Border shell can be attached to objects of class Window or its subclasses.
The set of Border methods must be a subset of the set of class-Window methods. Let w be
an object of class Window or subclass of Window. The command

 Reflect.attachShell (w, new Border());

4

attaches dynamically a Border shell to w. Only Window object w is affected. Now when
a message draw is sent to w the shell method is executed which draws a border by calling
drawBorder and then calls the object method draw through super. Of course, any
message sent to this object through any variable (not only w) will be intercepted by the shell.

The method attachShell will throw an exception if the class of object w does not
belong to a set of classes defined at compile time. If the programmer wants to attach Border
shells to objects of a class X, she must specify this at compile time. This requirement could be
removed if the program created classes at run time.

 A shell class may inherit from other shell class. Although there is no semantic or
implementation problems related to this feature, it has not been implemented.

 Shells are an efficient kind of metaobjects. A message send to an object with an
attached shell is as fast as a message send to an object without a shell. This is true when the
method to be executed belongs either to the shell or to the object. Performance degradation
only occurs in methods that access shell instance variables. It is necessary to set a pointer in
the beginning of each shell method that accesses shell instance variables. If the object class is
reflective this pointer is set to an object instance variable called sv. Otherwise this pointer is
set to an address found in a hash table look-up using the object address as key.

 Shells can be used to change the behavior of objects of a class even when the source
code of this class is not available: the original class need not to be modified.

Method interceptAll

 In other languages, when a message is sent to an object with a metaobject, the
metaobject method methodCall is invoked regardless of the message. So one can change
the behavior of all object methods by defining only one method methodCall in the
metaobject class. The shell features seen till now only allow one to modify one method at a
time, thus making shells a restricted kind of metaobjects. To change the behavior of all object
methods one should define each object method in the shell class.

 The interceptAll feature allows shells to have the same functionality as
metaobjects. One can declare a method

 public Object interceptAll (Method met, Object[] args)

in the shell class. When a message m is sent to an object Q with a shell, the shell method m will
be executed. If the shell does not have a method m but has a method interceptAll, the
message parameters are packed in an array args passed as parameter to a call to shell
method interceptAll. The first real parameter is an object of class Method1 that
describes the Q method that would be executed if there were no shell. The interceptAll
method can call method m of Q using the method invoke of class Method:

 met.invoke (this, args);

1 Class from Java Core Reflection.

5

 Using this feature, one can send a message through a network to another machine
where the message can be unpacked and sent to another object. This mechanism makes it
easy to implement distributed programs as made in the Open C++ language [2] [3].

In Java every class is a subclass of Object. This allows the elements of args to be of
any type except the basic types like int and double. To allow args to store also values
of basic types there are some classes whose purpose is to pack basic values. For example an
object of class Integer stores an integer value and has methods to get and set the value. In
a call "a.m(1)", number 1 will be wrapped in an Integer object before being inserted
into array args.

Several papers describe language constructs similar to shell without interceptAll:
the trap mechanism of KSL [14], the metaobject construct of Foote and Johnson [4],
predicate classes [1], environmental acquisition [6], and contexts [22]. Shells without
interceptAll have also been used to make it easy to implement some patterns like
Decorator and Strategy [5]. In pattern Decorator, a class is used to add functionality to
objects of some other class. For example, class decorator Border is used to add a border
to objects of class Window. To add a border to a Window object Q, one should create a
Border object and make it refer to Q. The Border object will forward all messages but
draw to Q. Method draw of the Border object will draw a border and then call method
draw of Q to draw a window. This pattern is easily implemented using shells as shown in
Figure 2.

3 Dynamic Shell Implementation

This section describes how language Java was extended to support dynamic shells. The
implementation of dynamic shells for R-Java was based on the implementation made for the
Green language [12] [13].

3.1 Representation of Objects, Shells, and Shell Classes

 In Java all variables whose types are classes are pointers to objects. And each object
has a pointer to its class. Figure 3 (a) shows the internal representation of an object of class A.
Variable a is a pointer to an object which has a pointer classInfo to an object of class
Class representing class A. This Class object has a method table for class A and other
information about this class. The object instance variables are put after pointer classInfo.

6

(a) (b)

a class A a

NULL

classInfo

instance
variables

sv

class AclassInfo

instance
variables

Figura 3: Internal representation of a (a) non-reflective and (b) reflective object
of class A

 Figure 3 (b) shows the representation of an object of a reflective class A. An object of
a reflective class will be identical to an object of a normal class except by an extra instance
variable called sv. This variable has type Object and points to null if the object is not
attached to a shell. If it is attached, this variable points to an object with the shell instance
variables as shown in Figure 4 (a). Variable sv is defined in class ReflectiveObject
which is inherited directly or indirectly by all reflective classes. A reflective class should inherit
from ReflectiveObject (which inherits from Object) or from another reflective class. If
the reflective class does not explicitly inherits from other class (as class Window of Figure 2),
the compiler makes it inherit from ReflectiveObject .

 The programmer should tell the compiler a shell class B will be used to create
metaobjects that will be attached to objects of a class A. With this knowledge, the compiler
splits class B into two classes, B_A_m and B_ivc. Class B_A_m inherits from A and has
all class-B methods. Class B_ivc has all class-B instance variables and constructors. Class
B_A_m has no instance variables and class B_ivc has no methods. To attach a shell of
class B to an object of a reflective class A (as that of Figure 3 (b)) is to change the object
class to B_A_m and make the object instance variable sv point to an object of class
B_ivc. The object layout after the attachement is shown in Figure 4 (a).

 To attach a shell to an object is to change its class. Since B_A_m inherits from A and
does not define any new method, no method signature is added to or removed from the
object. Class B_A_m does not declare instance variables. If it did, B_A_m and A objects
would have different layouts. This would prevent the changing of the object class from A to
B_A_m when a B shell is attached to it.

 The B instance variables are declared in B_ivc . The object variable sv points to a
B_ivc object as in Figure 4 (a). The methods declared in B_A_m that use B (the shell class)
instance variables are compiled in such a way they use these variables through pointer sv of
the object.

 Now we explain how the class A of an object, a run-time information, can be related
to the creation of class B_A_m (which inherits A) at compile time.

 At compile time the programmer should associate to each shell class B a set of classes
called the "allowed set" of B. A shell of B can only be attached at run time to an object of a

7

class specified in the allowed set of B. This requirement would be unnecessary if we created
classes B_A_m at run time.

 For each class A that belongs to the allowed set of B, the R-Java compiler:

1. creates a class called B_A_m with the B methods;
2. makes B_A_m inherit from A;
3. includes a static variable prev in B_A_m which will refer to the Class object

describing class A;
4. if class A is not reflective, includes a static variable ht of class Hashtable in

B_A_m;
5. creates a class B_ivc with the variables and constructors of shell class B. All its

instance variables are declared public. This class has no methods;
6. inserts at the beginning of each B_A_m method that accesses shell instance variables

code to assigns to an auxiliary pointer shellV the address of a class-B_ivc object
with the shell instance variables. This address will be got:
? from the object variable sv if class A is reflective2 or;
? through a hash table ht using the object address as key if class A is not reflective.

 The access to a shell instance variable inside B_A_m methods is made using the
auxiliary pointer shellV and not through the variable sv (when A is reflective) or using the
hash table ht (when A is not reflective). This is necessary because if the shell is removed from
the object by a shell method, sv will point to null (if A is reflective) or the reference to the
shell memory will be deleted from the hash table ht (if A is not reflective) causing an error if
the shell tries to access its instance variables through sv or ht. Even after the shell is removed
from the object, the auxiliary variable shellV will continue to point to the class-B_ivc
object with the shell instance variables. This object will be collected by the garbage collector
as any other object.

3.2 R-Java Library Classes Definition

 We are going to better define the library classes ReflectiveObject and
Reflect of R-Java. Class ReflectiveObject has only instance variable sv:

class ReflectiveObject {

 Object sv;

}

 Variable sv will refer to the shell instance variables. All reflective classes must inherit
from another reflective class or from ReflectiveObject.

 Class Reflect has methods attachShell and removeShell to attach and
remove shells from objects. The attachShell method attaches a shell to an object as in:

2 This variable is inherited by all reflective classes from class ReflectiveObject.

8

try {

 Reflect.attachShell (a, new B());

} catch (ShellException e) { ... }

 Method attachShell will:

1. test if the class of a belongs to the "allowed set" of shell class B. If not, the method will
throw an exception ShellException. Note that:
? the "allowed set" of a class is defined by the programmer at compile time;
? the class of a will only be known at run time;
? this test would not be necessary if class B_A_m were dynamically created;

2. if the class of a is reflective, attachShell will make pointer sv of the object point
to the shell instance variables which are stored in an object of class B_ivc created
and passed as parameter to attachShell — see Figure 4 (a). If the class of a is
not reflective, the pair (address of object a, address of object created by “new
B_ivc()”) is inserted in the hash table ht in which ht is a static variable of class
B_A_m. The address of object a is used as key. This hash table will be used inside the
shell methods to get the address of the shell instance variables (which are in a B_ivc
object);

3. make the object pointer classInfo point to class B_A_m created at compile time.
So the object will use the methods of class B_A_m. See Figure 4 (a).

In the example above, there is a call to the constructor of shell class B_ivc in

Reflect.attachShell (a, new B_ivc());

This call is made before the attachment of object a to the shell. Then the B_ivc constructor
cannot:

? access the variables of the object to which the shell is attached or call its methods or
constructors;

? call the methods of the shell class.

These restrictions are not serious since in most cases the shell constructors only initiate their
own variables and, in case they need data from the object they are attached to, the data can
be passed to them by parameters of a constructor.

 To remove the last shell attached to the object, the programmer should call the method
removeShell of class Reflect as follows:

 try {

 Reflect.removeShell (a);
 } catch (ShellException e) { ... }

 If there is no shell attached to object a, method removeShell will throw an
exception ShellException. Otherwise, the method removeShell will

9

1. make the object pointer classInfo point to class A which is the object class before
it was attached to the shell. Note that this class is referred by variable prev of class
B_A_m. If class B_A_m does not inherit from any other shell class, it will inherit
directly from A and prev will just refer to B_A_m superclass. However, if B_A_m
inherits from a shell class, prev will refer to the first normal class found in a search
beginning in B_A_m and continuing up in the superclass chain;

2. if class A is reflective, assign null to object pointer sv. If A is not reflective, the
address of the class-B_ivc object with the shell instance variables is removed from
the hash table ht of class B_A_m. In both cases, the class-B_ivc object with the
shell instance variables will only be deallocated by the garbage collector.

 Figure 4 (a) shows a class-B_ivc shell attached to an object of reflective class A and
Figure 4 (b) shows the configuration after the shell is removed from the object. There may be
one or more local variables shellV referring to the shell instance variables. Each of these
variables belongs to a shell method that has not finished its execution — it is in the stack of
called methods.

a

(a)

object of B_ivc

inherits from

class A

class
B_A_mclassInfo

instance
variables

sv shell
instance
variables

shellV

a

(b)

object of
B_ivc

inherits from

class A

class
B_A_m

classInfo

instance
variables

sv shell
instance
variables

shellV

Figura 4: Reflective object with a shell (a) attached and (b) removed from it

3.3 Implementation of interceptAll

 Suppose a shell of class B is attached to an object of class A and a message m is sent
to the object. If B defines a method m, this method will be executed. If B does not define a
method m but defines a method interceptAll, then this method is executed and receives
as parameters the method m and its arguments both packed in objects.

10

 To make this possible , the compiler creates and inserts a method m in class B_A_m
for each method m defined in A but not in shell class B. This method has the same signature as
method m of A. That means class B_A_m has a method for each method defined in A. Either
the method was created by the compiler or defined by the programmer in shell class B.

 Method m of B_A_m is implemented as shown in the example of Figure 5.

Variable method_A_m was initialized with an object of class Method that describes
class-A method m. This object is got through method getMethod of class Class passing
as parameters the name of the method (m) and the types of the formal parameters of the
method (int). This initialization is made in the static initializer of class B_A_m:

static {
 ...
 method_A_m = A.class.getMethod ("m", parameterTypes);
 ...
}

 This code is executed when the class is loaded. The parameters received by method m
of B_A_m are packed into objects of class Object and inserted into array args. After this
method interceptAll of B_A_m is called passing the variables method_A_m and args
as parameters.

public void m (int n) {

 // create an object of class Integer that packs
 // the parameter n and inserts it into the array
 Object []args = { new Integer(n) };

 // call method interceptAll
 this.interceptAll (method_A_m, args);
 }

Figura 5: Example of implementation of method m of class B_A_m

 So the message m sent to the object of class A will cause the execution of method m of
B_A_m which calls the method interceptAll defined by the programmer in the shell class
B. Method m of B_A_m returns the same value returned by method interceptAll. In
general there will be a cast to the return value type of the method. For example, if m returned
Window, the last command of method m of Figure 5 would be

 return (Window) this.interceptAll(method_A_m, args);

11

3.4 The Java Virtual Machine

 The Java interpreter was changed to recognize a new instruction called chclass.
This instruction is necessary to change the class of an object at run time. The chclass
instruction is only used inside the attachShell and removeShell methods of class
Reflect. Figure 6 shows the specification of this instruction.

chclass is safe because:
1. the new object class should be subclass of the old class or vice-versa;
2. the set of public method signatures of both classes should be equal;
3. the subclass, either the old or new object class, should not declare any instance

variable;

If these requirements are not fullfilled, chclass throws exception
ShellException . If they are, the layout of the objects of the new and old classes are
equal. Then objects of both classes are equivalent and can replace one another.

 The Java interpreter scans a program bytecodes before executing them to discover if
there is any security violation or type error. This approach cannot be used to check the
correctness of chclass instructions. This correctness depends on the class of
objectref (see Figure 6) which will only be known at run time. Therefore our R-Java
implementation did not demand any changes in the bytecode verifier.

 The just-in-time compiler was modified to recognize and work with the chclass
instruction.

The Java Virtual Machine need not to be modified in order to change the class of an object at
run time. This can be made by a native method. We have made this implementation by creating
a native method chclass . To use this method is apparently better than to change the Java
Virtual Machine (JVM), an essentially non-portable modification. However, a close inspection
reveals that the use of a native method chclass is also non-portable. Each JVM may
define its own object layout. Therefore, the native method chclass is made to work with a
particular JVM since it depends on the object layout to change the object class. A native
method chclass for a JVM probably will not work when used with another JVM
implementation.

12

Instruction: chclass

Operation: Changes the class of an object

Stack:

..., objectref, classref ? ...

Description:

The value of the top of the stack (classref) must be a reference to an object of class Class
and the value immediately under it (objectref) must be a reference to an object.

The two values are poped off the stack and the class of the object referred by objectref
is changed to the class represented by classref. The class of objectref should be subclass
of the class represented by classref or vice-versa. The set of public method signatures of
both classes should be equal and the subclass should not declare any instance variable.
Otherwise exception ShellException is thrown.

Figura 6: The new chclass instruction for the Java Virtual Machine

Then we are faced with two options:
1. to change the JVM by adding instruction chclass ;
2. to use a native method chclass;

Option 1 makes R-Java programs non-portable. Option 2 implies the safety of a program is
not guaranteed: it is not possible to check security violations or type errors in native methods.
Then whenever one uses a native method there is no guarantee the program is safe. There may
even be, after the call to the native method, the sending of a message to an object that does
not have the corresponding method.

4 Examples

Shells can trace messages sent to an object as shown in Figure 7. A shell of class
TracePerson can be attached to objects of class Person to print a message in the screen
every time the object receives a message set. Instance variable num of TracePerson is
initiated in the constructor of the shell class and is incremented each time the object receives a
message set. Typically num would be initiated with 0.

Figure 8 shows the classes in Java created by the compiler using the classes of Figure 7.
The class TracePerson_ivc of Figure 8 has the variables and constructors of the shell
class TracePerson of Figure 7 and the class TracePerson_Person_m has its
methods.

 If class Person of Figure 7 were not declared as reflective, the classes in Java
created by the compiler would be those shown in Figure 9.

13

Reflective classes can inherit from other reflective classes. Class Person could inherit
from a class Creature. In this case the compiler would make Creature inherit from
ReflectiveObject and Person inherit from Creature.

reflective class Person {
 String name;
 int age;
 public void set (String name, int age) {
 this.name = name;
 this.age = age;
 }
}

shell class TracePerson (Person) {
 private int num;
 public TracePerson (int x) {
 num = x;
 }
 public void set (String name, int age) {
 num++;
 System.out.println ("message No. ");
 System.out.println (num);
 System.out.println (" sent to " + super.name);
 super.set (name, age);
 }
}

Figura 7: Tracing methods of an object

5 Related Work

The Java language supports introspective reflection. Information about objects and classes can
be accessed at run time. For example method getClass() of class Object (inherited by
every class) returns an object describing the object class. This object belongs to class Class
and stores the class name and information about its superclass, methods, and so on. However
objects of class Class only describe classes — they cannot change them. That means the
objects of Class do not implement behavioral reflection.

 Recently some reflective architectures for behavioral reflection have been proposed as
extensions to the Java language. These are presented next.

5.1 Reflective Java

This protocol [26][27] makes message sends reflective. A message sent to an object of a
reflective class is redirected to a metaobject. That is made without any change in the Java
language, its compiler, or in the Virtual Machine. A pre-processor is used like in Open C++

14

[2] [3] to create a reflective subclass from the normal class. This subclass has a pointer to a
metaobject and forwards the messages to it.

5.2 MetaXa

 Golm proposed an introspective and behavioral reflection protocol called MetaXa [8],
formely known as MetaJava [7]. The introspective reflection is implemented by a set of
classes that describe the structure of the program (classes, methods, variables) similar to Java
Core Reflection [16]. Behavioral reflection in MetaXa is implemented as a set of classes and
demanded changes in the Java Virtual Machine.

class Person extends ReflectiveObject {
 String name;
 int age;
 public void set (String name, int age) {
 this.name = name;
 this.age = age;
 }
}

class TracePerson_ivc {
 public int num;
 public TracePerson_ivc (int x) {
 num = x;
 }
}

class TracePerson_Person_m extends Person {
 public static Class prev = Person.class;

 public void set (String name, int age) {
 TracePerson_ivc shellV;
 shellV = (TracePerson_ivc)sv;
 shellV.num ++;
 System.out.println ("message No. ");
 System.out.println (shellV.num);
 System.out.println (" sent to " +
 super.name);
 super.set (name, age);
 }
}

Figura 8: Java classes created from the example of Figure 7

MetaXa allows one to:

? intercept messages that are sent and received;
? control the access to instance variables and object creation;

15

? control the locking of objects and the loading of classes to memory.

 In this language it is possible to associate a metaobject to an object, to a reference
(variable), or to a class. In this last case the metaobject intercepts all the message sends to all
the objects of the class.

class Person {
 String name;
 int age;
 public void set (String name, int age) {
 this.name = name;
 this.age = age;
 }
}

class TracePerson_ivc {
 public int num;
 public TracePerson_ivc (int x) {
 num = x;
 }
}

class TracePerson_Person_m extends Person {
 public static Class prev = Person.class;
 public static Hashtable ht = new Hashtable();

 public void set (String name, int age) {
 TracePerson_ivc shellV;
 shellV = (TracePerson_ivc) ht.get (this);

 shellV.num ++;
 System.out.println ("message No. ");
 System.out.println (shellV.num);
 System.out.println (" sent to " + super.name);
 super.set (name, age);
 }
}

Figura 9: Example in Java for non-reflective classes

5.3 Guaraná

 Guaraná [20] [21] is a reflective architecture that allows the program to intercept
message sends and accesses (read and write) to instance variables. Each of these operations
is transformed into an object delivered to the metaobject that controls the object. There is an
elaborate system to compose metaobjects which is the main feature of Guaraná. A composer
metaobject keeps a list of other metaobjects and delegates messages to them.

16

 To implement Guaraná it was not necessary to change Java language although some
instructions of the Virtual Machine were redefined. The instruction that call a method and the
ones which access instance and static variables (read and write) were changed to test for the
presence of a metaobject.

5.4 Dalang

 This Java extension demanded no changes in the Java Virtual Machine or access to
the program source code [24][25]. It creates wrappers for classes by handling the bytecodes
of the classes. To make a class reflective at compile or run time, Dalang builds a wrapper class
with the same interface as the original class. This wrapper class is much like the class created
when one uses method interceptAll in a shell class. Each method will be similar to the
method of Figure 5. The wrapper class inherits from a metaobject class, not from the original
class.

 All objects of a reflective class have an associate metaobject, which cannot be
removed or changed.

Language OpenJava [23] supports metaobjects but it will not be discussed in this paper.
OpenJava metaobjects exist at compile time and those of R-Java exist at run time. They are
not equivalent and it would not be reasonable to compare them.

6 Discussion

The existing reflective architectures for Java are complex when compared to shells. They are
also inefficient if just a subset of the object methods should be intercepted. To understand
these points, it is necessary to study how metaobjects work in a typical architecture.

 There is a class MetaObject that must be inherited by any other metaobject class.
The method

 public Object interceptMethodCall (MethodCall aCall)

of MetaObject must be redefined in subclasses. When an object attached to a metaobject
receives message m as in:

 x.m (1, b);
the message will be packed into an object of MethodCall used as an argument to a call to
method interceptMethodCall of the metaobject. The MethodCall object contains all
the message data, which includes the name and parameters.

 Method interceptMethodCall can call the method of object x that would
be called if there were no metaobject. This is done by a special method of the metaobject or
by a method of object aCall .

 This approach requires the understanding of a metaobject protocol used for object-
metaobject interaction. This results in a model more complex than shells. Besides that, every

17

message send is packed into an object delegated to the metaobject. This operation is very
inefficient since it requires the creation of many objects and their manipulation.

This metaobject model is a simplified version of metaXa [7] [8] , Reflective Java [26]
[27], Guaraná [20] [21], and Dalang [24]. In fact, there are some specific points of each of
these Java extensions that need to be considered.

MetaXa [7] [8] has a MetaObject class from which every metaobject class must
inherit. This class defines a lot of methods among which:

? attachObject to attach a metaobject to an object;
? continueExecutionObject, which is equivalent to a call to super in a shell

class — calls the original method of the object;
? doExecuteObject, which is equivalent to a message send to this inside a shell

class.

In Reflective Java metaobjects [26] [27] can only be attached to objects of classes
declared as reflective. This prevents a metaobject to be attached to an object of a non-
reflective class. All objects of a reflective class will be attached to metaobjects. This means
poor performance since in most of the cases just part of the class objects will need
metaobjects. One cannot unattach a metaobject from an object. At most we can replace it.

The limitations of Reflective Java are due to a design choice: the designers did not want to
change the compiler or the Java virtual machine.

 Guaraná [20][21] supports a powerful system of metaobject composition which, in
our opinion is rather complex.

 Dalang designers have chosen not to change the Java Virtual Machine bringing some
limitations to this Java extension. Some of these are solved just by changing the current
implementation [24] leaving only two non-wanted characteristics, in our opinion:

1. all objects of a reflective class are attached to metaobjects of the same metaobject
class;

2. one cannot change or remove the metaobject of an object.

Both Dalang and Reflective Java did not demand changes in the JVM making them work with
existing systems to a large extend. Even with some limitations, these reflective Java extensions
may be all someone needs to implement her program.

 As said before, the use of interceptAll in a shell class brings the good and the
bad of metaobjects to shells. However, the declaration and use of interceptAll is much
simpler than the use of a MetaObject class. And the programmer need not to learn a set of
classes that compose the metaobject protocol. She should only know about method invoke
of class Method. The syntax and semantics of shells are very close to those of normal classes,
making the concept easy to understand. The problem with shells is that they require the adding
of a new instruction chclass to the Java Virtual Machine thus making reflective program
with shells non-portable. However, this problem seems to be inherent to metaobject
implementation: to intercept the methods of a single object one needs

18

? to change its class through an instruction like chclass or;
? to intercept all message sends or;
? to test at the beginning of all methods of a class for the presence of a metaobject. This

would slow down all objects of the class, even those not attached to metaobjects. The
rule “Don’t use, don’t pay” is broken. Besides that, the compiler needs to know if a
class is reflective ? when compiling it or the class should be loaded at run time and its
bytecodes changed by a special class loader, as in Dalang.

The two first solutions, which we believe are the viable ones, require changes in the Java
Virtual Machine. Note the second solution slows down all the program.

 Below is a summary of some restrictions and particularities of shells.
? A shell class may have a superclass.
? The superclass of a reflective class must be reflective.
? In order to attach a shell to an object of a class, the class need not to be reflective.

However, accesses to shell instance variables will be faster if it is.
? The allowed set of a shell class should be defined at compile time. In order to attach a

shell of class S to an object of class A, the programmer should add A to the allowed set of
S.

Performance

 To study the performance of R-Java metaobjects we will use a class A with methods

 void m() { }

 int m1(int x) { return 0; }

 A m(A a) { return this; }

and a shell with a method interceptAll. The interceptAll method just calls,
with invoke, the object method that would be called if there were no shell:

 met.invoke(this, args);

That is, the shell attachment does not modify the object behavior. After attaching this shell to
an A object there is a decrease in performance which is shown in Figure 11. The figures are
the ratios "shelltime/normalTime" in which "shellTime"is the time it takes to execute the method
if the shell is attached to the A object. "normalTime" is the time taken by a message send to the
A object without a shell.

 The first column of the table shows the figures when an optimized version of
interceptAll is used. the second column refers to an implementation without any
optimization. In the optimized version, it takes 3.55 times as much to call m when the A object
has a shell than to call m when there is no shell.

? That is, objects of the class may be attached to metaobjects.

19

 Our compiler does the following optimizations:
? it replaces a call "met.invoke(this, args)" by a switch with one case

label for each method that can be called. Therefore there is no need for a method
search at run time;

? it does not allocate memory for an array args with length zero.

In MetaXa and Guaraná, when a message is sent to an object with an attached
metaobject, the message is packed in an object describing the message send. The creation of
this object is not made in R-Java making it faster than those languages.

To compare the performances, let us use the number 7.86 of the cell in line "a.m()" and
column "NON-OPTIMIZ."of the table of Figure 10. The corresponding figures in MetaXa
and Guaraná are 215 and 150, at least.

The figure for Reflective Java is not available [28] and for Dalang is about 7 [24]. Dalang
uses a method wrapping mechanism that has some similarities to R-Java.

It is worth noting the figures presented in Figure 11 are greater but not radically different
from the ones for the Green language [12]. For example, the date for "a.m()" in Green are
3.3 (optimized) and 4.6 (non-optimized) which are not far from 3.55 and 7.86 in R-Java.

The similar performance was expected since the R-Java implementation was based on the
Green one. The data of Figure 10 were got using Sun stations and the Just-In-Time JDK
compiler for the R-Java code.

It was necessary to use a little trick in order to use the JDK compiler since this compiler
does not recognize R-Java code. We prepared a class like TracePerson_Person_m
of Figure 8 for A and the shell class. Then we used an object of this class to measure the times
corresponding to an A object attached to a shell.

 OPTIMIZ. NON-OPTIMIZ

a.m() 3.55 7.86

a.m1(1) 12.99 19.20

a.m2(a) 6.97 10.11

Figura 10: A table with interceptAll performance

7 Conclusion

 R-Java was based in the language Green [12] [13] in which shells were first
introduced. However, R-Java shells are not just a copy of Green shells. Although the concept

20

is very similar, the implementation is completely different since Green code is translated to C
and Java is translated to bytecodes. It was necessary to add a new instruction to the Java
virtual machine, create a new class ReflectiveObject, and change all low level aspects
of Green implementation to make it work with bytecodes.

In order to attach a metaobject of a shell class to an object of a class, the programmer
must tell the compiler this class belongs to the allowed set of the shell class. This restriction
may be lifted in a future implementation of R-Java by dynamically creating classes as made in
Dalang.

The implementation described in this paper is simple because it generates some Java
classes instead of generating bytecodes directly. The implementation of shell classes and
reflective classes did not demand changes in the Java Virtual Machine. The only modification
needed in the Virtual Machine was the implementation of the chclass instruction. This
instruction is only used inside the library class Reflect. To implement class Reflect we
modified the Java assembler Jasmin [15] and the Java Virtual Machine [18] interpreter Kaffe
[17] making them recognize the new instruction chclass. The Java compiler changed to
recognize the shell classes was Guavac [10].

 R-Java shells are faster and simpler than normal metaobjects yet powerful. R-Java
shells are much faster than metaobjects because they do not need to create an object
representing the intercepted message send. If only a few methods are to be intercepted, the
programmer can define them in the shell class as in Figure 2. There will be no overhead at run
time if the base class is reflective. If it is not, there will be only a hash table look-up in the
beginning of each shell method that accesses shell instance variables. This mechanism of
message intercepting, which does not reify message send, has been added to several languages
[1] [4] [6] [14] [22] and is very useful in implementing design patterns.

 R-Java requires the addition of one instruction to the Java Virtual Machine or the use
of a native method which depends on a specific implementation of the JVM. These
requirements are undesirable but it seems impossible to lift them. There should be some
mechanism to change an object class at run time in order to attach or remove a metaobject. It
should be noted the new instruction added to the JVM checks its parameters to prevent a run-
time type error.

 Finally, R-Java is simple. Shells are very similar to subclasses making them very easy
to learn. They do not really need a complex metaobject protocol with new commands and
definitions.

Acknowledgements. This work was financed by FAPESP under process number
97/12209-7.

8 References

21

1. Chambers, C. Predicate Classes. European Conference on Object-Oriented
Programming - ECOOP’93, LNCS 707, 1993.

2. Chiba, S. Open C++ Programmer’s Guide. Technical Report 93-3, Department of
Information Science, University of Tokyo, Tokyo, Japan, 1993.

3. Chiba, S. and Masuda, T. Designing an Extensible Distributed Language with a Meta-
Level Architecture. Proceeding of ECOOP’93. Lecture Notes in Computer Science
No. 707, 1993.

4. Foote, B. and Johnson, R. Reflective Facilities in Smalltalk-80. SIGPLAN Notices, vol.
24, no. 10, October 1989. OOPSLA 89.

5. Gamma, E; Helm, R; Johnson, R and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series, Addison-Wesley,
Reading, MA, 1994.

6. Gil, J. and Lorenz, D. Environmnetal Acquisition: a New Inheritance-Like Abstraction
Mechanism. SIGPLAN Notices, vol. 31, no. 10, October 1996. OOPSLA 96.

7. Golm, M. Design and Implementation of a Meta Architecture for Java. Diplomarbeit im
Fach Informatik, Friedrich-Alexander Universität, Erlangen-Nürnberg, Jan. 1997.

8. Golm, M. MetaXa and the Future of Reflection. Proceedings of the OOPSLA’98
Workshop on Reflective Programming in C++ and Java, 1998.

9. Gosling J; Joy, B; Steele, Guy. The Java Language Specification. Sun Microsystems
Computer Corporation, Version 1.0, August 1996.

10. Guavac: A free compiler for the Java language, Version 1.0. Available at:
ftp://ftp.de.uu.net/pub/programming/languages/java/guavac

11. Guimarães, J.O.; Tomioka E. and Prado, A.F. Usando Metaobjetos para Implementar
Padrões. II Simpósio Brasileiro de Linguagens de Programação, Campinas, SP,
Setembro 1997.

12. Guimarães, J.O. Reflection for Statically Typed Languages. European Conference on
Object-Oriented Programming - ECOOP’98, LNCS 1445, Eric Jul (Ed.). Also
available at http://www.dc.ufscar.br/~jose/green/shell.zip, 1998.

13. Guimarães, J.O. The Green Language: Definition and Comments. Available at
http://www.dc.ufscar.br/~jose/green/green.htm, 1998.

14. Ibrahim, M.; Bejcek, W. and Cummins, F. Instance Specialization without Delegation.
Journal of Object-Oriented Programming, June 1991.

15. Jasmin: A Java Assembler Interface, Version 1.0. Available at:
http://found.cs.nyu.edu/meyer/jasmin/

16. JAVA Core Reflection: API and Specification. JavaSoft, Mountain View, CA, USA,
October 1996.

17. Kaffe: A free virtual machine to run Java code, Version 1.0.b2. Available at:
http://www.kaffe.org/

22

18. Lindholm, T. and Yellin, F. The Java Virtual Machine Specification, Java Series,
Addison-Wesley, September 1996.

19. Lisboa, M.L.; Rubira, C.M.F. Técnicas de Programação para Tolerância a Falhas. I
Simpósio Brasileiro de Linguagens de Programação, Belo Horizonte, MG, Setembro
1996.

20. Oliva, A; Buzato, L.E.; Garcia, I.C.; The Reflexive Architecture of Guaraná.. Available
at: http://www.dcc.unicamp.br/~oliva.

21. Oliva, A. and Buzato, L.E. Composition of Meta-Objects in Guaraná. Proceedings of
the OOPSLA’98 Workshop on Reflective Programming in C++ and Java.

22. Seiter, L.; Palsberg, J and Lieberherr, K. Evolution of Object Behavior using Context
Relations. IEEE Transactions on Software Engineering, vol. 24, no. 1, January 1998.

23. Tatsubori, M. An Extension Mechanism for the Java Language. Master Thesis,
University of Tsukuba, 1999.

24. Welch, I. and Stroud, R. Dalang – A Reflective Java Extension. Proceedings of the
OOPSLA’98 Workshop on Reflective Programming in C++ and Java, 1998.

25. Welch, I. Personal Communication, 1999.

26. Wu, Z. and Schwiderski, S. Reflective Java: Making Java even More Flexible. FTP:
Architecture Projects Management Limited (apm@ansa.co.uk), Cambridge, UK, 1997.

27. Wu, Z. Reflective Java and a Reflective Component-Based Transaction Architecture.
Proceedings of the OOPSLA’98 Workshop on Reflective Programming in C++ and
Java, 1998.

28. Wu, Z. Personal Communication, 1999.

