R-Java: A Reflective Java Extension

Elisa Tomioka, José de Oliveira Guimar aes, Antonio Francisco do Prado
Departamento de Computacdo, UFSCar, Sdo Carlos, SP, 13565-905, Brazil

emall: {elisa, jose, prado} @dc.ufscar.br

Abstract. Java has been largely used for Internet and distributed
programming. Java is object-oriented, reasonably simple, and portable.
However, an important concept is missing in this language: metaobjects. A
metaobject intercepts messages sent to the object to which it is attached
allowing a programmer to modify the behavior of existent code with a few
changes in the source code. This article presents a Java extension that
supports a kind of metaobjects called shells which are smple, statically typed,
and efficient. They fit nicely in the Java paradigm of simplicity and safety.
Shells are type safe and demand few changes in the syntax and in the compiler.
In order to implement shells, it is necessary either to use a native method or to
add an instruction to the Java Virtual Machine.

1 Introduction

Java [9] has been widdly used as a programming language in the World Wide Web. It is
reasonably ssimple, object-oriented, portable, and offers support for distributed gpplications.
The lagt two features make Java ided to be used in the WWW which is composed by
different machines and operdting systems spread throughout the planet. The language
portability dlows a single program to run in different platforms without changing its behavior.
The digtributed support dlows programs in different machines on the Web to cooperate with
each other.

Although Java is object-oriented and has dl the flexibility of this paradigm, thereis one
concept missing in this language: behaviord reflection. Reflection is the ability of a program to
examine its own dructure (structurd or introgpective reflection) or to change its own
computation (behaviord reflection). A language that supports introspective reflection dlows a
program to discover the class of an object, to examine the methods of this class, the parameter
types of each method, and so on. Introspective reflection is aready supported by Java through
Java Core Reflection [16]. Behaviord reflection takes place when a program changes its own
behavior. The program may insert (remove) ingtance variables and methods into classes,
change the inheritance hierarchy, and modify the method look- up agorithm for asingle object
or for the entire program.

A metaobject is an object that intercepts messages sent to another object thus
controlling its behavior. When a message is sent to an object Q, the metaobject attached to it

1

can execute its own code, redirect the message to another object, or send the message to
object Q. Since metaobjects do change the method look-up for a single object, they
implement behaviord reflection.

Metaobjects compose a software layer called the meta-leve which controls the
program behavior. The meta:-level does not ded directly with the program requirements. It
just helps the program to reach its gods. The separaion of domains between program and
meta-level produces programs easier to modify and mantain. Degp changes in the program
behavior can be made by smdl changesin the meta: leve.

M etaobjects can be used to monitor classes and objects, debug a single object at rur+
time, check the parameters passed to object methods, make the implementation d design
patterns [5] easier [11], implement fault tolerance [19], object distribution, and pardldism
trangparently.

When a metaobject intercepts a message sent to the object it controls, it can redirect
the message to another object in another machine. That makes it easy to didtribute objects
through different platforms. The object that sends the message may not know that the method
will be executed in another machine: the distribution is transparent.

Dynamic shells [12] are an efficient, Saticdly typed, and smple kind of metaobjects
initidly designed for the Green Language [13]. Because of these features we added dynamic
shells to Java creating an extenson cadled R Java (from Refledive Java). The philosophy of
amplicity and safety of Javais preserved in this language extenson.

2 Dynamic Shells

Dynamic shells are asmple kind of metaobjects. A shell can be attached to a normd object to
intercept messages sent to the object.

Figure 1 shows a normal object Q, represented by acircle, that was initialy referenced by
variable s. This figure shows dso ashell F, represented by a rounded rectangle, attached to
object Q. After the attachment, variable s, like any other reference to object Q, will refer to
shdl F. Thisfigure only presents the concepts of shdlls: it is not intended to explain how shels

are implemented.
S —>@

Figura 1: Shell F attached to object Q

The dass of shdl F can only define methods with the same interface as the methods of
Q dass If F dass defines method m this method will be executed when a message mis sent
to object Q. But if F class does not define a method m method mof Q will be executed. If
object Q knows how to respond to a message m so will object Q attached to shell F. This
means an object with an attached shell knows how to respond to the same set of messages as

the object adone. Then the object type is not modified by shdl attachment and no type error is
introduced by shells.

Messages sent to sel f in Q methods will be intercepted by the shell. So shells are
unlike wrapper classes [5] which compose a layer that just forwards the messages to the
object. In wrapper classesthe sdf reference is not maintained. In shdls, itis.

Message sends to super indde Q methods are not intercepted. A message send to
super isamessage send to sel f in which the method to be executed a run time is found
a compile time in a search that begins a the superclass. Since the method is found a compile
time, no interception a run time by the shell is possible.

A shdl may have ingance variables to keep information about the object to which it is
attached. The shdl ingtance variables can only be manipulated by shell methods. The accessto
these variables will be faster if the class of the object to which the shdll is attached is reflective.
A reflective cdass is declared in R-Java by putting the class modifier r ef | ect i ve before the
classname.

An example of reflective and shell dasses is shown in Figure 2. Class W ndowhas a
method dr aw which draws a window in the screen. Note this class was declared as a
reflective class.

reflective class Wndow {

public void draw() { ... }
}

shel | class Border (W ndow) {
private void drawBorder() { ... }

public void draw) {
/* draws a border */
this. drawBorder();
/* draws the wi ndow */
super.draw);
}

Figura 2: A dynamic shell class declaration

Shell classBor der was declared using the class modifier shel | . After the shell class
name there should appear the base class name between parentheses (W ndow in this
example). So a Bor der shell can be attached to objects of class W ndow or its subclasses.
The set of Bor der methods must be a subset of the set of class-W ndowmethods. Let wbe
an object of classW ndowor subclass of W ndow. The command

Ref l ect.attachShell (w, new Border());

ataches dynamicdly a Bor der shdl to w. Only W ndow object w is affected. Now when
amessage dr aw issent to w the shell method is executed which draws a border by calling
dr awBor der and then cdlsthe object method dr aw throughsuper . Of course, any
message sent to this object through any variable (not only w) will be intercepted by the shell.

The method at t achShel | will throw an exception if the class of object w does not
belong to a set of classes defined at compile time. If the programmer wants to attach Bor der
shells to objects of a class X, she must specify thisa compile time. This requirement could be
removed if the program created classes at run time.

A dhdl dass may inherit from other shel class Although there is no semantic or
implementation problems related to this feature, it has not been implemented.

Shells are an efficient kind of metaobjects. A message send to an object with an
atached shell is as fast as a message send to an object without a shell. This is true when the
method to be executed belongs either to the shell or to the object. Performance degradation
only occurs in methods that access shell ingtance variables. It is necessary to set a pointer in
the beginning of each shell method that accesses shdll ingtance varidbles. If the object classis
reflective this pointer is set to an object ingtance variable caled sv. Otherwise this pointer is
st to an address found in a hash table look- up using the object address as key.

Shells can be used to change the behavior of objects of a class even when the source
code of thisclassis not available: the origind class need not to be modified.

Method inter ceptAll

In other languages, when a message is sent to an object with a metaobject, the
metaobject method met hodCal | isinvoked regardiess of the message. So one can change
the behavior of dl object methods by defining only one method net hodCal | in the
metaohject class. The shell features seen till now only alow one to modify one method at a
time, thus making shells a redtricted kind of metaobjects. To change the behavior of al object
methods one should define each object method in the shell class.

The intercept All fedure dlows shdls to have the same functiondity as
metaobjects. One can declare a method

public Cbject interceptAll (Method nmet, Cbject[] args)

in the shdl dass. When amessage mis sent to an object Q with ashdl, the shell method mwill
be executed. If the shell does not have a method m but has a method i nt er cept Al | , the
message parameters are packed in an array ar gs passed as parameter to a call to shell

method i nt er cept Al | . The first red parameter is an object of dass Met hod! that
describes the Q method that would be executed if there were no shell. Thei nt er cept Al |

method can cal method mof Q using the method i nvoke of class Met hod:

met.invoke (this, args);

1 Class from Java Core Reflection.

4

Using this feature, one can send a message through a network to another machine
where the message can be unpacked and sent to another object. This mechanism makes it
easy to implement distributed programs as madein the Open C++ language [2] [3].

In Java every classisasubclass of Obj ect . Thisdlows the dements of ar gs to be of
any type except the basic types likei nt and doubl e. Todlow ar gs to Sore aso vaues
of basic types there are some classes whose purpose is to pack basic vaues. For example an
object of class | nt eger gores an integer value and has methods to get and set the vaue. In
acdl 'a. m(1)", number 1 will bewrappedinan | nt eger object before being inserted
into array ar gs.

Severd papers describe language constructs similar to shdl without | nt er cept Al | :
the trap mechanism of KSL [14], the metaobject construct of Foote and Johnson [4],
predicate classes [1], environmentd acquidtion [6], and contexts [22]. Shells without
i nt ercept Al | have adso been used to make it easy to implement some patterns like
Decorator and Strategy [5]. In pattern Decorator, a class is used to add functiondity to
objects of some other class. For example, class decorator Bor der isused to add a border
to objects of class W ndow. To add a border to a W ndow object Q, one should create a
Bor der object and make it refer to Q The Bor der object will forward al messages but
dr awto Q Method dr aw of the Bor der object will draw aborder and then cal method
dr awof Q to draw a window. This pattern is eadly implemented usng shells as shown in
Figure 2.

3 Dynamic Shell Implementation

This section describes how language Java was extended to support dynamic shells. The
implementation of dynamic shells for R Java was based on the implementation made for the
Green language [12] [13].

3.1 Representation of Objects, Shells, and Shell Classes

In Java dl variables whose types are classes are pointers to objects. And each object
has a pointer to its class. Figure 3 (8) shows the interna representation of an object of class A.
Vaiable a is a pointer to an object which has a pointer cl assl nf o to an object of class
Cl ass representing class A. This Cl ass object has a method table for class A and other
information about this class. The object instance variables are put after pointer ¢l ass! nf o.

a —»p| cl asslnfo__> a —p| cl asslnfo__>
instance instance
varigbles variables
sV
L H—
(@ (b)

Figura 3: Internal representation of a (a) non-reflective and (b) reflective object
of class A

Figure 3 (b) shows the representation of an object of a reflective class A. An object of
a reflective class will be identicd to an object of a normal class except by an extra instance
varidble cdled sv. This varidble has type Obj ect and pointsto nul | if the object is not
atached to a shdl. If it is attached, this variable points to an object with the shdl instance
varigbles as shown in Figure 4 (9). Variable sv isdefined in class Ref | ecti vebj ect
which is inherited directly or indirectly by al reflective classes. A reflective dass should inherit
fromRef | ecti veObj ect (whichinheritsfrom Obj ect) or from another reflective class. If
the reflective class does not explicitly inherits from other class (as classW ndow of Figure 2),
the compiler makesit inherit from Ref | ect i veObj ect .

The programmer should tell the compiler a shell class B will be used to create
metaobjects that will be attached to objects of a class A. With this knowledge, the compiler
slitsclass B into two classes, B A mand B _i vc. ClassB_ A minheitsfrom A and has
dl class-B methods. Class B_i vc has dl dass B instance variables and constructors. Class
B_A_mhas no ingance variables and class B_i vc has no methods. To attach a shell of
class B to an object of a reflective class A (as that of Figure 3 (b)) is to change the object
classto B_A _m and make the object ingance varigble sv point to an object of class
B_i vc. The object layout after the attachement is shown in Figure 4 ().

To atach a shdll to an object is to change its class. Since B_ A minheritsfrom A and
does not define any new method, no method signature is added to or removed from the
object. Class B_A mdoes not declare instance variables. If it did, B_A mand A objects
would have different layouts. This would prevent the changing of the object class from Ato
B_A mwhenaB shel isatached toit.

The B ingtance variables are declared in B_i vc . The object variable s v pointsto a
B_i vc object asin Figure4 (). The methodsdeclared in B_ A _mthat use B (the shell dass)
instance variables are compiled in such a way they use these variables through pointer sv of
the object.

Now we explain how the class A of an object, a run-time information, can be rdaed
to the creation of classB_A_m (which inherits A) a compile time.

At compile time the programmer should associate to each shell classB a et of classes
cdled the "dlowed s of B. A shdl of B can only be attached at run time to an object of a

class specified in the dlowed set of B. This requirement would be unnecessary if we created
classesB A mat runtime.

For each class A that belongs to the allowed set of B, the R-Java compiler:

createsaclass called B A mwith the B methods;

makes B_A _minherit from A;

3. includes a ddic varidble prev in B_A m which will refer to the d ass object
describing classA,;

4. if dass A is not reflective, includes a datic variable ht of class Hasht abl e in
BAM

5. creates a class B i vc with the variables and congructors of shell class B. All its
ingtance variables are declared public. This class has no methods;

6. insarts at the beginning of each B_A mmethod that accesses shell instance variables

code to assigns to an auxiliary pointer shel | V the address of aclass-B_i vc object

with the shdll ingtance variables. This addresswill be got:

? fromtheobject varidble sv if dassA isreflective’ or;

? through a hash table ht using the object address as key if classA isnot reflective.

A

The access to a shdl ingance varidble ingde B_A_mmethods is made usng the
auxiliary pointer shel | V and not through the varigble sv (when A isreflective) or usng the
hash table ht (when A isnot reflective). Thisis necessary becauseif the shdll is removed from
the object by a shell method, sv will point to nul | (if A isreflective) or the reference to the
shdl memory will be deleted from the hash table ht (if A is not reflective) causing an error if
the shdll triesto accessits instance variables through sv or ht . Even after the shell isremoved
from the object, the auxiliary variable shel | V will continue to point to the dassB_i vc
object with the shell ingtance variables. This object will be collected by the garbage collector
as any other object.

3.2 R-Javalibrary Classes Definition
We are going to better define the library classes Refl ecti veObj ect and
Ref | ect of R-Java. ClassRef | ecti veObj ect hasonly indance varicble sv:
cl ass ReflectiveObject {

hj ect sv;

Vaiable sv will refer to the shdl instance varidbles. All reflective dasses mugt inherit
from another reflective classor from Ref | ect i veQbj ect .

Class Ref | ect has methods att achShel | and renoveShel | to attach and
remove shellsfrom objects. The at t achShel | method ataches a shell to an object asin:

2 Thisvariableisinherited by all reflective classes from class Ref | ect i veQbj ect .

try {
Refl ect.attachShell (a, new B());
} catch (Shell Exceptione) { ... }

Method at t achShel | will:

1. test if the dlass of a beongsto the "alowed sat” of shel classB. If not, the method will
throw an exception Shel | Except i on. Note that:

? the"dlowed st of aclassis defined by the programmer & compile time;
? thedassof a will only be known & run time;
? thistest would not be necessary if classB_A_mwere dynamically crested;

2. ifthedassof a isreflective at t achShel | will make pointer sv of the object point
to the shdl ingtance variables which are stored in an object of class B_i vc created
and passed as parameter to at t achShel | — see Figure 4 (). If the class of a is
not reflective, the pair (address of object a, address of object created by ‘new
B ivc() ") isinsated in the hash table ht in which ht isadatic varidble of class
B_A m The address of object a isused as key. This hash table will be used ingde the
shell methods to get the address of the shell ingtance varidbles (which areina B_i vc
object);

3. make the object pointer cl assl nf o point to classB_A_m created a compile time.
So the object will use the methods of classB_A_m See Figure 4 (a).

In the example above, thereisacdl to the constructor of shell classB_i vc in

Refl ect.attachShell (a, new B_ivc());

This cal is made before the attachment of object a to the shell. ThentheB_i vc constructor
cannot:

? access the variables of the object to which the shell is attached or cdl its methods or
congtructors,
? cdl the methods of the shdll class.

These redtrictions are not serious since in most cases the shell congtructors only initiate their
own variables and, in case they need data from the object they are attached to, the data can
be passed to them by parameters of a constructor.

To remove the last shell attached to the object, the programmer should cal the method
removeShel | of classRef | ect asfdllows

try {

Refl ect. renoveShel | (a);
} catch (Shell Exceptione) { ... }

If there is no shdl atached to object a, method r emoveShel | will throw an
exception Shel | Except i on. Otherwise, the methodr enpbveShel | will

1. make the object pointer cl ass| nf o point to class Awhich isthe object class before
it was attached to the shell. Note that this class is referred by variable pr ev of class
B A m If dass B_A m does not inherit from any other shdl dass, it will inherit
directly from A and pr ev will just refer to B_A m superclass. However, if B_A m
inherits from a shdl dass, prev will refer to the first norma class found in a search
beginningin B_A_mand continuing up in the superdass chain;

2. if dass A isrdflective, asdgn nul | to object pointer sv. If A is not reflective, the
address of the cdass-B_i vc object with the shell instance variables is removed from
the hash table ht of class B_A m In both cases, the classB_i vc object with the
shdll instance variables will only be dedllocated by the garbage collector.

Figure 4 (a) showsaclassB_i vc shell attached to an object of reflective class A and
Figure 4 (b) shows the configuration after the shell is removed from the object. There may be
one or more loca varigbles shel | V referring to the shdll instance variables. Each of these
varigbles belongs to a shell method that has not finished its execution — it isin the stack of
called methods.

inheritsfrom 1 inheritsfrom
class
a—p| cl asslnfo__> a —|classinfo
- 3 A m
instance instance
variables jhel v variables shel IV
sV | > sV :|—
instance 1 instance
variables - variables
object of B_i vc ongct of
€) (b)

Figura 4: Reflective object with a shell (a) attached and (b) removed from it

3.3 Implementation of interceptAll

Suppose a shell of dass B is attached to an object of class A and amessage mis sent
to the object. If B definesamethod m this method will be executed. If B does not define a
method m but defines amethod i nt er cept Al | , then this method is executed and receives
as parameters the method mand its arguments both packed in objects.

To make this possible, the compiler creates and inserts a method mincdass B_A m
for each method mdefinedin A but not in shdll dlassB. Thismethod hasthe same signature as
method mof A. That means class B_A mhas a method for each method defined in A. Either
the method was created by the compiler or defined by the programmer in shell class B.

Method mof B_A_misimplemented as shown in the example of Figure 5.

Variable net hod_A mwas initidized with an object of class Met hod that describes
classsA method m This object is got through method get Met hod of class Cl ass passng
as parameters the name of the method () and the types of the formd parameters of the
method (i nt). Thisinitidization ismadeintheddicinitidizer of dassB_A m

static {

met hod A m= A class.getMethod ("m', paraneterTypes);

This code is executed when the class is loaded. The parameters received by method m
of B_A mare packed into objects of class Obj ect and inserted into array ar gs. After this
method i nt er cept Al | of B_A mis cdled passing the varidblesnet hod_A _mandar gs
asparameters.

public void m(int n) {

/'l create an object of class Integer that packs
/1 the parameter n and inserts it into the array
bject [Jargs = { new Integer(n) };

/1 call method interceptAll
this.interceptAll (nethod A m args);
}

Figura 5: Example of implementation of method m of class B_A_m

So the message msent to the object of class A will cause the execution of method mof
B_A mwhich cdlsthe methodi nt er cept Al | defined by the programmer in the shell class
B. Method mof B_A m returns the same vaue returned by method i nt er cept Al | . In
generd there will be a cagt to the return value type of the method. For example, if mreturned
W ndow;, the last command of method mof Figure 5 would be

return (Wndow) this.interceptAll(nethod A m args);

10

3.4 TheJavaVirtua Machine

The Java interpreter was changed to recognize a new indruction caled chcl ass.
This ingruction is necessary to change the class of an object a run time. The chcl ass
ingruction is only used indde the attachShel | and r enoveShel | methods of class
Ref | ect . Figure 6 shows the specification of thisingtruction.

chcl ass issafe because:

1. thenew object class should be subclass of the old class or vice-versa;

2. the st of public method signatures of both classes should be equd;;

3. the subclass, ether the old or new object class, should not declare any instance

varigble

If these reguirements ae not fullfilled, chcl ass throws exception
Shel | Excepti on. If they are, the layout of the objects of the new and old classes are
equa. Then objects of both classes are equivalent and can replace one another.

The Java interpreter scans a program bytecodes before executing them to discover if
there is any security violation or type error. This approach cannot be used to check the
correctness of chcl ass indructions. This correctness depends on the class of
obj ectref (see Figure 6) which will only be known at run time. Therefore our R Java
implementation did not demand any changesin the bytecode verifier.

The just-in-time compiler was modified to recognize and work with thechcl ass
ingtruction.

The Java Virtual Machine need not to be modified in order to change the class of an object at
run time. This can be made by a native method. We have made thisimplementation by creeting
andive method chcl ass. To use this method is gpparently better than to change the Java
Virtud Machine (VM), an essentidly non portable modification. However, a close ingpection
reveds that the use of a native method chcl ass is dso nonportable. Each VM may
define its own object layout. Therefore, the native methodchcl ass ismadeto work with a
particular VM d€ince it depends on the object layout to change the object class. A native
method chcl ass for a VM probably will not work when used with another WM
implementation.

Instruction chclass
Operation: Changes the class of an object

Stack:

..., Objectref, classref ? ...

Description:

The vaue of the top of the stack (classref) must be areference to an object of class Class
and the vdue immediatdy under it (objectref) must be areference to an object.

The two values are poped off the stack and the class of the object referred by objectref
is changed to the class represented by classref. The class of objectref should be subclass
of the class represented by classref or vice versa. The set of public method signatures of
both classes should be equa and the subclass should not declare any instance varigble.
Otherwise exception ShellException isthrown.

Figura 6: The new chclass instruction for the Java Virtual Machine

Then we are faced with two options.
1. tochangethe VM by adding indruction chcl ass;
2. touseanaivemethodchcl ass;

Option 1 makes R Java programs non-portable. Option 2 implies the safety of a program is
not guaranteed: it is not possible to check security violations or type errorsin native methods.
Then whenever one uses a native method there is no guarantee the program is safe. There may
even be, after the call to the native method, the sending of a message to an object that does
not have the corresponding method.

4 Examples

Shells can trace messages sent to an object as shown in Figure 7. A shdl of class
Tr acePer son can be attached to objects of classPer son to print amessage in the screen
every time the object receives a message set . Instance varigble numof Tr acePer son is
initiated in the congtructor of the shell class and is incremented each time the object receives a
message set . Typicdly numwould beinitiated with 0.

Figure 8 shows the classes in Java created by the compiler using the classes of Figure 7.
The class Tr acePer son_i vc of Figure 8 has the variables and congtructors of the shell
class TracePer son of Figure 7 and the class TracePerson_Person_m has its
methods.

If class Person of Figure 7 were not declared as reflective, the dasses in Java
created by the compiler would be those shownin Figure 9.

12

Reflective classes can inherit from other reflective classes. Class Per son could inherit
from a class Cr eat ur e. In this case the compiler would make Cr eat ur e inherit from
Refl ecti veObj ect and Per son inheritfrom Cr eat ur e.

refl ective class Person {
String nane;
i nt age;
public void set (String nane, int age) {
this. nane = nane;
this.age = age;
}
}

shel |l class TracePerson (Person) {
private int num
public TracePerson (int x) {

num = Xx;
}
public void set (String nane, int age) {
num+;

Systemout.println ("message No. ");
Systemout.println (num;

Systemout.println (" sent to " + super.nane);
super.set (nane, age);

Figura 7: Tracing methods of an object

5 Related Work

The Java language supports introspective reflection. Information about objects and classes can
be accessed at run time. For example method get Cl ass() of classObj ect (inherited by
every class) returns an object describing the object class. This object beongsto classCl ass
and gtores the class name and information about its superclass, methods, and so on. However
objects of classC ass only describe classes — they cannot change them. That means the

objectsof Cl ass do not implement behaviord reflection.

Recently some reflective architectures for behaviora reflection have been proposed as
extensionsto the Javalanguage. These are presented next.
5.1 Reflective Java

This protocol [26][27] makes message sends reflective. A message sent to an object of a
reflective class is redirected to a metaobject. That is made without any change in the Java
language, its compiler, or in the Virtud Machine. A pre-processor is used like in Open C++

13

[2] [3] to create a reflective subclass from the norma class. This subclass has a pointer to a
metaobject and forwards the messagesto it.

5.2 MetaXa

Golm proposed an introspective and behaviora reflection protocol caled MetaXa[8],
formely known as Metalva [7]. The introspective reflection is implemented by a st of
classes that describe the structure of the program (classes, methods, variables) smilar to Java
Core Reflection [16]. Behaviord reflection in MetaXa is implemented as a set of classes and
demanded changes in the Java Virtud Machine.

cl ass Person extends ReflectiveObject {
String nane;
i nt age;
public void set (String nane, int age) {
t hi s. nane = nane;
t hi s. age age;

}
}

cl ass TracePerson_ivc {
public int num
public TracePerson_ivc (int x) {
num = Xx;
}

}

cl ass TracePer son_Person_m ext ends Person {
public static O ass prev = Person. cl ass;

public void set (String nane, int age) {
TracePerson_ivc shel |V,
shel IV = (TracePerson_ivc)sv;
shel | V. num ++;
Systemout.println ("message No. ");
Systemout.println (shellV.num;
Systemout.println (" sent to " +

super . nane) ;

super.set (nane, age);

Figura 8: Java classes created from the example of Figure 7

MetaXa dlows oneto:

? intercept messages that are sent and received,
? control the access to instance variables and object creation;

14

? contral the locking of objects and the loading of classesto memory.

In this language it is possible to associate a metaobject to an object, to a reference
(variable), or to aclass. In thislast case the metaobject intercepts dl the message sends to dl
the objects of the class.

cl ass Person {
String nane;

i nt age;

public void set (String nane, int age) {
t hi s. nane = nane;
this.age = age;

}

}

cl ass TracePerson_ivc {
public int num
public TracePerson_ivc (int x) {
num = Xx;
}

}

cl ass TracePer son_Person_m ext ends Person {
public static C ass prev = Person.cl ass;
public static Hashtable ht = new Hashtabl e();

public void set (String nane, int age) {
TracePerson_ivc shel |V,
shellV = (TracePerson_ivc) ht.get (this);

shel | V. num ++;

Systemout.println ("message No. ");
Systemout.println (shellV.nunj;
Systemout.println (" sent to "
super.set (nane, age);

+ super. nane);

Figura 9: Example in Java for nonreflective classes

5.3 Guarana

Guarana [20] [21] is a reflective architecture that alows the program to intercept
message sends and accesses (read and write) to instance variables. Each of these operations
is transformed into an object ddivered to the metaobject that controls the object. Thereis an
elaborate system to compose metaobjects which s the main feature of Guaran& A composer
metaobject keeps alist of other metaobjects and del egates messages to them.

Toimplement Guarand it was not necessary to change Java language dthough some
ingructions of the Virtua Machine were redefined. The ingruction that cal a method and the
ones which access instance and dtatic variables (read and write) were changed to test for the
presence of a metaobject.

54 Dalang

This Java extenson demanded no changes in the Java Virtua Machine or access to
the program source code [24][25]. It creates wrappers for classes by handling the bytecodes
of the classes. To make a class reflective at compile or run time, Dalang builds awrapper class
with the same interface as the origind class. This wrapper class is much like the class created
when one uses method i nt er cept Al | in ashel dass Each method will be smilar to the
method of Figure 5. The wrapper class inherits from a metaobject class, not from the origina
class.

All objects of a reflective class have an associste metaobject, which cannot be
removed or changed.

Language OpenJava [23] supports metaobjects but it will not be discussed in this paper.
Opendava metaobjects exist at compile time and those of R Java exist a run time. They are
not equivaent and it would not be reasonable to compare them.

6 Discussion

The exigting reflective architectures for Java are complex when compared to shells. They are
dso inefficient if just a subset of the object methods should be intercepted. To understand
these points, it is necessary to study how metaobjects work in atypica architecture.

Thereisaclass Met aObj ect that must be inherited by any other metaobject class.
The method

public Object interceptMethodCall (MethodCall aCall)

of Met aCbj ect must be redefined in subclasses. When an object attached to a metaobject
receives messagemasin:

x.m(1, b);
the message will be packed into an object of Met hodCal | used as an argument to a call to

method i nt er cept Met hodCal | of the metaobject. The Met hodCal | object catainsal
the message data, which includes the name and parameters.

Method i nt er cept Met hodCal | can cdl the method of object x that would
be cdled if there were no metaobject. This is done by a specia method of the metaobjeat or
by amethod of object aCal | .

This gpproach requires the understanding of a metaohject protocol used for object
metaobject interaction. This results in a model more complex than shells. Besides that, every

16

message send is packed into an object delegated to the metaobject. This operation is very
inefficient since it requires the creation of many objects and their manipulation.

This metaobject modd is a smplified verson of metaXa [7] [8] , Reflective Java [26]
[27], Guarana [20] [21], and Dalang [24]. In fact, there are some specific points of each of
these Java extensions that need to be considered.

MetaXa [7] [8] has a Met albj ect class from which every metaobject class must
inherit. This dass defines alot of methods among which:

? attachQj ect to attach ametaobject to an object;

? continueExecuti onObj ect, which is equivdent to a cdl to super inashdl
class— cdlsthe origind method of the object;

? doExecut eObj ect , which is equivdlent to amessage send to t hi s ingde a shel
class.

In Reflective Java metaobjects [26] [27] can only be attached to objects of classes
declared as reflective. This prevents a metaobject to be attached to an object of a nont
reflective class. All objects of a reflective class will be atached to metaobjects. This means
poor performance since in most of the cases just part of the class objects will need
metaobjects. One cannot unattach a metaobject from an object. At most we can replaceit.

The limitations of Reflective Java are due to a design choice: the designers did not want to
change the compiler or the Javavirtud machine.

Guarana [20][21] supports a powerful system of metaobject composition which, in
our opinion is rather complex.

Ddang designers have chosen not to change the Java Virtud Machine bringing some
limitations to this Java ettenson. Some of these are solved just by changing the current
implementation [24] leaving only two non-wanted characterigtics, in our opinion:

1. dl objects of a reflective class are attached to metaobjects of the same metaobject

class;
2. one cannot change or remove the metaobject of an object.

Both Dalang and Reflective Java did not demand changes in the VM making them work with
exiging sysems to a large extend. Even with some limitations, these reflective Java extensons
may be all someone needs to implement her program.

As sad before, the use of i nt er cept Al | in ashdl dass brings the good and the
bad of metaobjects to shells. However, the declaration and use of i nt er cept Al | ismuch
smpler than the use of a Met aCbj ect class. And the programmer need not to learn a set of
classes that compaose the metaobject protocol. She should only know about methodi nvoke
of classMet hod. The syntax and semantics of shells are very close to those of normal classes,
making the concept easy to understand. The problem with shellsisthat they require the adding
of anew indruction chcl ass to the Java Virtud Machine thus making reflective program
with shells nonportable. However, this problem seems to be inherent to metaobject
implementation: to intercept the methods of a single object one needs

17

? tochangeitsclassthrough aningtruction likechcl ass or;

? tointercept dl message sendsor;

? totedt at the beginning of al methods of a class for the presence of a metaobject. This
would dow down al objects of the class even those not attached to metaobjects. The
rule “Don’t use, don't pay” is broken. Besides that, the compiler needs to know if a
dassis reflective” when compiling it or the dass should be loaded at run time and its
bytecodes changed by a specid classloader, asin Daang.

The two firgt solutions, which we believe are the viable ones, require changes in the Java
Virtud Machine. Note the second solution dows down al the program.

Bdow isasummary of some restrictions and particularities of shells

? A shdl class may have a superclass.

The superclass of areflective class must be reflective.

? In order to attach a shdl to an object of a class, the class need not to be reflective.
However, accesses to shdl instance variables will be faster if itis.

? The alowed set of a shell class should be defined a compile time. In order to attach a
shdll of dass S to an object of classA, the programmer should add A to the allowed set of
S.

)

Performance

To study the performance of R-Java metaobjects we will tse a class A with methods

void () { }
int ml(int x) { return 0; }

Am Aa) { return this; }

and a shdl with a method i nt er cept Al I . The i nt er cept Al | method just cdls,
withi nvoke, the object method that would be cdled if there were no shell:

met . i nvoke(this, args);

That is, the shdl atachment does not modify the object behavior. After attaching this shell to
an A object there is a decrease in performance which is shown in Figure 11. The figures are
the ratios "shdltime/normaTime" in which "shdITime'is the time it takes to execute the method
if the shell is attached to the A object. "normaTime" is the time taken by a message send to the
A object without a shell.

The firg column of the table shows the figures when an optimized verson of
i ntercept All is usad. the second column refers to an implementation without any
optimization. In the optimized version, it takes 3.55 times as much to cal mwhen the A object
hasashell than to cal mwhen thereis no shell.

? That is, objects of the class may be attached to metaobjects.

18

Our compiler does the following optimizations:

& it replaces a cal et . i nvoke(this, args)" by aswitch with one case
label for each method that can be called. Therefore there is no need for a method
search at run time;

& it doesnot dlocate memory for anarray ar gs with length zero.

In MetaXa and Guarand, when a message is sent to an object with an attached
metaobject, the message is packed in an object describing the message send. The creation of
this object is not made in R-Java making it faster than those languages.

To compare the performances, let us use the number 7.86 of the cdl in line "am()" and
column "NON-OPTIMIZ."of the table of Figure 10. The corresponding figures in MetaXa
and Guarana are 215 and 150, at least.

The figure for Reflective Java is not avaldde [28] and for Ddang is aout 7 [24]. Ddang
uses a method wrapping mechanism that has some similaritiesto R-Java.

It is worth noting the figures presented in Figure 11 are greater but not radicdly different
from the ones for the Green language [12]. For example, the date for 'a. m() " in Green are
3.3 (optimized) and 4.6 (non-optimized) which are not far from 3.55 and 7.86 in R-Java.

The smilar performance was expected since the R-Javaimplementation was based on the
Green one. The data of Figure 10 were got using Sun gtations and the Just-1n Time JDK
compiler for the R-Java code.

It was necessary to use a little trick in order to use the JDK compiler since this compiler
does not recognize R Java code. We prepared a class like Tr acePer son_Per son_m
of Figure 8 for A and the shell class. Then we used an object of this class to measure the times
corresponding to an A object attached to a shell.

OPTIMIZ. NON-OPTIMIZ
a. m) 3.55 7.86
a. mi(1) 12.99 19.20
a. m2(a) 6.97 10.11

Figura 10: A table with interceptAll performance

7 Conclusion

R-Java was based in the language Green [12] [13] in which shdls were fird
introduced. However, R-Java shells are not just a copy of Green shells. Although the concept

19

is vary dmilar, the implementation is completely different since Green code is trandated to C
and Java is trandated to bytecodes. It was necessary to add a new ingtruction to the Java
virtua machine, creste a new class Ref | ecti ve(hj ect , and change dl low leve aspects
of Green implementation to make it work with bytecodes.

In order to attach a metaobject of a shell class to an object of a class, the programmer
must tell the compiler this class belongs to the alowed set of the shdl class. This redtriction
may be lifted in a future implementation of R-Java by dynamicaly creeting classes as made in
Ddang.

The implementation described in this paper is Smple because it generates some Java
classes ingead of generating bytecodes directly. The implementation of shell casses and
reflective classes did not demand changes in the Java Virtud Machine. The only modification
needed in the Virtud Machine was the implementation of the chcl ass indruction. This
ingruction is only used inside the library class Ref | ect . Toimplement dassRef | ect we
modified the Java assembler Jasmin [15] and the Java Virtud Machine [18] interpreter Kaffe
[17] making them recognize the new indruction chcl ass. The Java compiler changed to
recognize the shell classes was Guavac [10].

R-Java shdlls are faster and smpler than norma metaobjects yet powerful. R Java
shells are much faster than metaobjects because they do not need to creaste an object
representing the intercepted message send. If only a few methods are to be intercepted, the
programmer candefine them in the shell class asin Figure 2. There will be no overhead a run
time if the base class is reflective. If it is not, there will be only a hash table look-up in the
beginning of each shel method that accesses shell indance vaidbles. This mechaniam of
message intercepting, which does not reify message send, has been added to severd languages
[1] [4] [6] [14] [22] and is very useful inimplementing design petterns.

R-Java requires the addition of one ingtruction to the Java Virtua Machine or the use
of a naive method which depends on a specific implementation of the VM. These
requirements are undesirable but it seems impossible to lift them. There should be some
mechanism to change an object class at run time in order to attach or remove a metaobject. It
should be noted the new instruction added to the VM checks its parameters to prevent arurr
time type error.

Findly, R-Javais ample. Shdls are very smilar to subdasses making them very easy
to learn. They do not redly need a complex metaobject protocol with new commands and
definitions.

Acknowledgements. This work was financed by FAPESP under process number

97/12209-7.

8 References

20

10.

11

12.

13.

14.

15.

16.

17.

Chambers, C. Predicate Classes. European Conference on Object-Oriented
Programming - ECOOP’ 93, LNCS 707, 1993.

Chiba, S. Open C++ Programmer’s Guide. Technical Report 93-3, Depatment of
Information Science, University of Tokyo, Tokyo, Japan, 1993.

Chiba, S. and Masuda, T. Designing an Extensble Didtributed Language with a Meta-
Leve Architecture. Proceeding of ECOOP’ 93. Lecture Notes in Computer Science
No. 707, 1993.

Foote, B. and Johnson, R. Reflective Fadilities in Smdltak-80. SS GPLAN Notices, vol.
24, no. 10, October 1989. OOPSLA 89.

Gamma, E; Hdm, R; Johnson, R and Vlissdes, J. Design Patterns. Elements of
Reusable Object-Oriented Software. Professond Computing Series, AddisonWedey,
Reading, MA, 1994.

Gil, J. and Lorenz, D. Environmneta Acquistion: a New Inheritance-Like Abstraction
Mechanism. SSIGPLAN Notices, vol. 31, no. 10, October 1996. OOPSLA 96.

Golm, M. Desgn and Implementation of a Meta Architecture for Java. Diplomarbeit im
Fach Informatik, Friedrich-Alexander Universitét, Erlangen-Nurnberg, Jan. 1997.

Galm, M. MetaXa and the Future of Reflection. Proceedings of the OOPSLA’'98
Workshop on Reflective Programming in C++ and Java, 1998.

Goding J; Joy, B; Stede, Guy. The Java Language Specification. Sun Microsystems
Computer Corporation, Version 1.0, August 1996.

Guavac: A free compiler for the Java language, Verson 1.0. Avalable at:
ftp:/ftp.de.uu.net/pub/programming/languages/javalguavac

Guimardes, JO.; Tomioka E. and Prado, A.F. Usando Metaobjetos para |mplementar
Padrées. || Smpdsio Brasileiro de Linguagens de Programacdo, Campinas, SP,
Setembro 1997.

Guimardes, JO. Reflection for Staticaly Typed Languages. European Conference on
Object-Oriented Programming - ECOOP 98, LNCS 1445, Eric Jul (Ed.). Also
available a http://mww.dc.ufscar.br/~jose/green/shell.zip, 1998.

Guimardes, JO. The Green Language Définition and Comments. Avaldble at
http://www.dc.ufscar.br/~jose/green/green.htm, 1998.

Ibrahim, M.; Begcek, W. and Cummins, F. Instance Specidization without Delegation.
Journal of Object-Oriented Programming, June 1991.

Jasmin: A Java Assembler Interface, Veson 10. Avalade a:
http://found.cs.nyu.edwmeyer/jasmin/

JAVA Core Reflection: APl and Specification. JavaSoft, Mountain View, CA, USA,
October 1996.

Kaffe: A free virtual machine to run Java code Vesdon 1.0b2. Avalddle at:
http://Mmww.kaffe.org/

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

22

Lindholm, T. and Yélin, F. The Java Virtual Machine Specification, Java Series,
Addison-Wedley, September 1996.

Lishoa, M.L.; Rubira, C.M.F. Técnicas de Programacéo para Toleréncia a Falhas. |
Smpdsio Brasileiro de Linguagens de Programacéo, Belo Horizonte, MG, Setembro
1996.

Oliva, A; Buzato, L.E.; Garciag, |1.C.; The Reflexive Architecture of Guarana. Available
a: http://mww.dcc.unicamp.br/~oliva.

Oliva, A. and Buzato, L.E. Compostion of Meta- Objects in Guarand. Proceedings of
the OOPSLA’ 98 Workshop on Reflective Programming in C++ and Java

Saiter, L.; Pasberg, J and Lieberherr, K. Evolution of Object Behavior using Context
Rdaions. |EEE Transactions on Software Engineering, vol. 24, no. 1, January 1998.

Tatsubori, M. An Extension Mechanism for the Java Language. Master Thess,
University of Tsukuba, 1999.

Welch, I. and Stroud, R. Ddang — A Reflective Java Extenson. Proceedings of the
OOPSLA 98 Workshop on Reflective Programming in C++ and Java, 1998.

Welch, |. Personal Communication, 1999.

Wu, Z. and Schwiderski, S. Reflective Java Making Java even More Flexible. FTP:
Architecture Projects Management Limited (gpm@ansa.co.uk), Cambridge, UK, 1997.

Wu, Z. Reflective Java and a Reflective Component-Based Transaction Architecture.
Proceedings of the OOPSLA’ 98 Workshop on Reflective Programming in C++ and
Java, 1998.

WU, Z. Personal Communication, 1999.

